Regularized locality preserving discriminant analysis for face recognition

This paper proposes a regularized locality preserving discriminant analysis (RLPDA) approach for facial feature extraction and recognition. The RLPDA approach decomposes the eigenspace of the locality preserving within-class scatter matrix into three subspaces, i.e., the face space, the noise space and the null space, and then regularizes the three subspaces differently according to their predicted eigenvalues. As a result, the proposed approach integrates discriminative information in all of the three subspaces, de-emphasizes the effect of the eigenvectors corresponding to the small eigenvalues, and meanwhile suppresses the small sample size problem. Extensive experiments on ORL face database, FERET face subset and UMIST face database illustrate the effectiveness of the proposed approach.

[1]  Hua Yu,et al.  A direct LDA algorithm for high-dimensional data - with application to face recognition , 2001, Pattern Recognit..

[2]  Yuxiao Hu,et al.  Face recognition using Laplacianfaces , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Ja-Chen Lin,et al.  A new LDA-based face recognition system which can solve the small sample size problem , 1998, Pattern Recognit..

[4]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[5]  Azriel Rosenfeld,et al.  Face recognition: A literature survey , 2003, CSUR.

[6]  Dacheng Tao,et al.  Manifold Regularization for SIR with Rate Root-n Convergence , 2009, NIPS.

[7]  Xindong Wu,et al.  Manifold elastic net: a unified framework for sparse dimension reduction , 2010, Data Mining and Knowledge Discovery.

[8]  Jeng-Shyang Pan,et al.  Kernel class-wise locality preserving projection , 2008, Inf. Sci..

[9]  D. B. Graham,et al.  Characterising Virtual Eigensignatures for General Purpose Face Recognition , 1998 .

[10]  Dahua Lin,et al.  Nonparametric Discriminant Analysis for Face Recognition , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[12]  Zhigang Luo,et al.  Manifold Regularized Discriminative Nonnegative Matrix Factorization With Fast Gradient Descent , 2011, IEEE Transactions on Image Processing.

[13]  Dacheng Tao,et al.  Max-Min Distance Analysis by Using Sequential SDP Relaxation for Dimension Reduction , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Terence Sim,et al.  Discriminant Subspace Analysis: A Fukunaga-Koontz Approach , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Narendra Ahuja,et al.  Face recognition using kernel eigenfaces , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[16]  Xiaofei He,et al.  Locality Preserving Projections , 2003, NIPS.

[17]  Andy Harter,et al.  Parameterisation of a stochastic model for human face identification , 1994, Proceedings of 1994 IEEE Workshop on Applications of Computer Vision.

[18]  Jian Yang,et al.  KPCA plus LDA: a complete kernel Fisher discriminant framework for feature extraction and recognition , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Hanqing Lu,et al.  Improving kernel Fisher discriminant analysis for face recognition , 2004, IEEE Transactions on Circuits and Systems for Video Technology.

[20]  Lei Zhu,et al.  Face recognition based on orthogonal discriminant locality preserving projections , 2007, Neurocomputing.

[21]  Elzbieta Pekalska,et al.  Kernel Discriminant Analysis for Positive Definite and Indefinite Kernels , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Hyeonjoon Moon,et al.  The FERET Evaluation Methodology for Face-Recognition Algorithms , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Haifeng Hu,et al.  Orthogonal neighborhood preserving discriminant analysis for face recognition , 2008, Pattern Recognit..

[24]  Xudong Jiang,et al.  Eigenfeature Regularization and Extraction in Face Recognition , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  Xiaolong Teng,et al.  Face recognition using discriminant locality preserving projections , 2006, Image Vis. Comput..

[26]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[27]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[28]  Xuelong Li,et al.  Geometric Mean for Subspace Selection , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  Konstantinos N. Plataniotis,et al.  Regularization studies of linear discriminant analysis in small sample size scenarios with application to face recognition , 2005, Pattern Recognit. Lett..

[30]  Weiguo Gong,et al.  Bagging null space locality preserving discriminant classifiers for face recognition , 2009, Pattern Recognit..

[31]  Xuelong Li,et al.  Patch Alignment for Dimensionality Reduction , 2009, IEEE Transactions on Knowledge and Data Engineering.

[32]  Weiguo Gong,et al.  Null space discriminant locality preserving projections for face recognition , 2008, Neurocomputing.