Plasmonic nanopores for single-molecule detection and manipulation: towards sequencing applications.

Solid-state nanopore-based sensors are promising platforms for next-generation sequencing technologies, featuring label-free single-molecule sensitivity, rapid detection, and low-cost manufacturing. In recent years, solid-state nanopores have been explored due to their miscellaneous fabrication methods and their use in a wide range of sensing applications. In this review, we highlight a novel family of solid-state nanopores which have recently appeared, namely plasmonic nanopores. The use of plasmonic nanopores to engineer electromagnetic fields around a nanopore sensor allows for enhanced optical spectroscopies, local control over temperature, thermophoresis of molecules and ions to/from the sensor, and trapping of entities. This Mini-Review offers a comprehensive understanding of the current state-of-the-art plasmonic nanopores for single-molecule detection and biomolecular sequencing applications, and discusses the latest advances and future perspectives on plasmonic nanopore-based technologies.

[1]  Julien Lumeau,et al.  Extending Single Molecule Förster Resonance Energy Transfer (FRET) Range Beyond 10 Nanometers in Zero-Mode Waveguides. , 2019, ACS nano.

[2]  D. Kotsifaki,et al.  Plasmonic optical tweezers based on nanostructures: fundamentals, advances and prospects , 2019, Nanophotonics.

[3]  F. Angelis,et al.  SERS discrimination of single DNA bases in single oligonucleotides by electro-plasmonic trapping , 2019, Nature Communications.

[4]  C. Dekker,et al.  Nano-Optical Tweezing of Single Proteins in Plasmonic Nanopores , 2019, Small Methods.

[5]  Shengli Cai,et al.  Small molecule electro-optical binding assay using nanopores , 2019, Nature Communications.

[6]  A. Meller,et al.  Plasmonic‐Nanopore Biosensors for Superior Single‐Molecule Detection , 2019, Advanced materials.

[7]  B. Ilic,et al.  Fabrication and practical applications of molybdenum disulfide nanopores , 2019, Nature Protocols.

[8]  C. Dekker,et al.  Label-Free Optical Detection of DNA Translocations through Plasmonic Nanopores , 2018, ACS nano.

[9]  J. Korlach,et al.  Porous Zero-Mode Waveguides for Picogram-Level DNA Capture. , 2018, Nano letters.

[10]  Qing Zhao,et al.  Photothermally Assisted Thinning of Silicon Nitride Membranes for Ultrathin Asymmetric Nanopores. , 2018, ACS nano.

[11]  A. Antson,et al.  Thermostable virus portal proteins as reprogrammable adapters for solid-state nanopore sensors , 2018, Nature Communications.

[12]  A. Meller,et al.  Single-Molecule Discrimination of Labeled DNAs and Polypeptides Using Photoluminescent-Free TiO2 Nanopores. , 2018, ACS nano.

[13]  Tal Gilboa,et al.  Optically-Monitored Nanopore Fabrication Using a Focused Laser Beam , 2018, Scientific Reports.

[14]  L. Lagae,et al.  High spatial resolution nanoslit SERS for single-molecule nucleobase sensing , 2018, Nature Communications.

[15]  A. Ahmadian,et al.  Thermophoresis-Controlled Size-Dependent DNA Translocation through an Array of Nanopores. , 2018, ACS nano.

[16]  C. Joo,et al.  Single-molecule peptide fingerprinting , 2017, Proceedings of the National Academy of Sciences.

[17]  Ki-Bum Kim,et al.  Low-Noise Plasmonic Nanopore Biosensors for Single Molecule Detection at Elevated Temperatures , 2017 .

[18]  K. Afonin,et al.  Label-Free Single-Molecule Thermoscopy Using a Laser-Heated Nanopore. , 2017, Nano letters.

[19]  J. Korlach,et al.  Length-Independent DNA Packing into Nanopore Zero-Mode Waveguides for Low-Input DNA Sequencing , 2017, Nature nanotechnology.

[20]  P. Whitford,et al.  Nanopore-Based Measurements of Protein Size, Fluctuations, and Conformational Changes. , 2017, ACS nano.

[21]  Qi Wang,et al.  DNA sequencing by two-dimensional materials: As theoretical modeling meets experiments. , 2017, Biosensors & bioelectronics.

[22]  A. Meller,et al.  Light‐Enhancing Plasmonic‐Nanopore Biosensor for Superior Single‐Molecule Detection , 2017, Advanced materials.

[23]  Hervé Rigneault,et al.  In-Plane Plasmonic Antenna Arrays with Surface Nanogaps for Giant Fluorescence Enhancement. , 2017, Nano letters.

[24]  A. Meller,et al.  Single-Molecule DNA Methylation Quantification Using Electro-optical Sensing in Solid-State Nanopores. , 2016, ACS nano.

[25]  Wenqi Zhu,et al.  Quantum mechanical effects in plasmonic structures with subnanometre gaps , 2016, Nature Communications.

[26]  Bradley E. Bernstein,et al.  Single-molecule decoding of combinatorially modified nucleosomes , 2016, Science.

[27]  Philip Tinnefeld,et al.  DNA Origami Nanoantennas with over 5000-fold Fluorescence Enhancement and Single-Molecule Detection at 25 μM. , 2015, Nano letters.

[28]  Aleksei Aksimentiev,et al.  Plasmonic Nanopores for Trapping, Controlling Displacement, and Sequencing of DNA , 2015, ACS nano.

[29]  Cees Dekker,et al.  Self-Aligned Plasmonic Nanopores by Optically Controlled Dielectric Breakdown. , 2015, Nano letters.

[30]  Lei Jiang,et al.  Fabrication of Nanochannels , 2015, Materials.

[31]  H. Rigneault,et al.  Matching Nanoantenna Field Confinement to FRET Distances Enhances Förster Energy Transfer Rates. , 2015, Nano letters (Print).

[32]  M. Wanunu,et al.  Direct and Scalable Deposition of Atomically Thin Low-Noise MoS2 Membranes on Apertures. , 2015, ACS nano.

[33]  Maria Fyta,et al.  Threading DNA through nanopores for biosensing applications , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.

[34]  Ke Liu,et al.  Identification of single nucleotides in MoS2 nanopores. , 2015, Nature nanotechnology.

[35]  Li-Yu Daisy Liu,et al.  Electrochemical Reaction in Single Layer MoS2: Nanopores Opened Atom by Atom. , 2015, Nano letters.

[36]  Fluorescence energy transfer enhancement in aluminum nanoapertures , 2015, 1504.00761.

[37]  David R. Smith,et al.  Nanogap-enhanced infrared spectroscopy with template-stripped wafer-scale arrays of buried plasmonic cavities. , 2015, Nano letters.

[38]  S. Howorka,et al.  Structural and mechanistic insights into the bacterial amyloid secretion channel CsgG , 2014, Nature.

[39]  C. Dekker,et al.  DNA Translocations through Solid-State Plasmonic Nanopores , 2014, Nano letters.

[40]  S. Turner,et al.  Reversible Positioning of Single Molecules inside Zero-Mode Waveguides , 2014, Nano letters.

[41]  Luke P. Lee,et al.  Graphene nanopore with a self-integrated optical antenna. , 2014, Nano letters.

[42]  H. Ho,et al.  Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. , 2014, Chemical Society reviews.

[43]  Ankur Gupta,et al.  Resonant plasmonic enhancement of single-molecule fluorescence by individual gold nanorods. , 2014, ACS nano.

[44]  Tao Zhang,et al.  DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering , 2014, Nature Communications.

[45]  H. Rigneault,et al.  Plasmonic antennas and zero-mode waveguides to enhance single molecule fluorescence detection and fluorescence correlation spectroscopy toward physiological concentrations. , 2014, Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology.

[46]  K. Briggs,et al.  Nanopore Fabrication by Controlled Dielectric Breakdown , 2013, PloS one.

[47]  Jakub Dostalek,et al.  Plasmon-Enhanced Fluorescence Biosensors: a Review , 2013, Plasmonics.

[48]  Theodore D. Moustakas,et al.  Optoelectronic control of surface charge and translocation dynamics in solid-state nanopores , 2013, Nature nanotechnology.

[49]  Hervé Rigneault,et al.  A plasmonic 'antenna-in-box' platform for enhanced single-molecule analysis at micromolar concentrations. , 2013, Nature nanotechnology.

[50]  C. Dekker,et al.  Plasmonic nanopore for electrical profiling of optical intensity landscapes. , 2013, Nano letters.

[51]  J. Reiner,et al.  Temperature sculpting in yoctoliter volumes. , 2013, Journal of the American Chemical Society.

[52]  Aleksei Aksimentiev,et al.  Assessing graphene nanopores for sequencing DNA. , 2012, Nano letters.

[53]  M. Niederweis,et al.  Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase , 2012, Nature Biotechnology.

[54]  Reuven Gordon,et al.  Optical trapping of a single protein. , 2012, Nano letters.

[55]  P. Nordlander,et al.  Plasmons in strongly coupled metallic nanostructures. , 2011, Chemical reviews.

[56]  Tomaso Zambelli,et al.  Techniques for recording reconstituted ion channels. , 2011, The Analyst.

[57]  Sheereen Majd,et al.  Controlling the translocation of proteins through nanopores with bioinspired fluid walls , 2011, Nature nanotechnology.

[58]  Cees Dekker,et al.  Hybrid pore formation by directed insertion of α-haemolysin into solid-state nanopores. , 2010, Nature nanotechnology.

[59]  Sang‐Hyun Oh,et al.  Membrane protein biosensing with plasmonic nanopore arrays and pore-spanning lipid membranes. , 2010, Chemical science.

[60]  Mark Akeson,et al.  Replication of Individual DNA Molecules under Electronic Control Using a Protein Nanopore , 2010, Nature nanotechnology.

[61]  A. Meller,et al.  Synchronous optical and electrical detection of biomolecules traversing through solid-state nanopores. , 2010, The Review of scientific instruments.

[62]  S. Turner,et al.  Real-Time DNA Sequencing from Single Polymerase Molecules , 2009, Science.

[63]  Prashant K. Jain,et al.  On the Universal Scaling Behavior of the Distance Decay of Plasmon Coupling in Metal Nanoparticle Pairs: A Plasmon Ruler Equation , 2007 .

[64]  S. Turner,et al.  Zero-Mode Waveguides for Single-Molecule Analysis at High Concentrations , 2003, Science.

[65]  J. Trent,et al.  Ordered nanoparticle arrays formed on engineered chaperonin protein templates , 2002, Nature materials.

[66]  D. Branton,et al.  Characterization of individual polynucleotide molecules using a membrane channel. , 1996, Proceedings of the National Academy of Sciences of the United States of America.