Evolution and spread of antibiotic resistance

Abstract.  Antibiotic resistance is a clinical and socioeconomical problem that is here to stay. Resistance can be natural or acquired. Some bacterial species, such as Pseudomonas aeruginosa, show a high intrinsic resistance to a number of antibiotics whereas others are normally highly antibiotic susceptible such as group A streptococci. Acquired resistance evolve via genetic alterations in the microbes own genome or by horizontal transfer of resistance genes located on various types of mobile DNA elements. Mutation frequencies to resistance can vary dramatically depending on the mechanism of resistance and whether or not the organism exhibits a mutator phenotype. Resistance usually has a biological cost for the microorganism, but compensatory mutations accumulate rapidly that abolish this fitness cost, explaining why many types of resistances may never disappear in a bacterial population. Resistance frequently occurs stepwise making it important to identify organisms with low level resistance that otherwise may constitute the genetic platform for development of higher resistance levels. Self‐replicating plasmids, prophages, transposons, integrons and resistance islands all represent DNA elements that frequently carry resistance genes into sensitive organisms. These elements add DNA to the microbe and utilize site‐specific recombinases/integrases for their integration into the genome. However, resistance may also be created by homologous recombination events creating mosaic genes where each piece of the gene may come from a different microbe. The selection with antibiotics have informed us much about the various genetic mechanisms that are responsible for microbial evolution.

[1]  M. Caparon,et al.  Excision and insertion of the conjugative transposon Tn916 involves a novel recombination mechanism , 1989, Cell.

[2]  T. Grundström,et al.  Isolation and characterization of DNA repetitions carrying the chromosomal beta-lactamase gene of Escherichia coli K-12. , 1979, Molecular & general genetics : MGG.

[3]  S. Lindquist,et al.  Genetic basis of induction and overproduction of chromosomal class I beta-lactamase in nonfastidious gram-negative bacilli. , 1988, Reviews of infectious diseases.

[4]  S. Normark beta-Lactamase induction in gram-negative bacteria is intimately linked to peptidoglycan recycling. , 1995, Microbial drug resistance.

[5]  N. Brown,et al.  Transposition in prokaryotes: transposon Tn501. , 1991, Research in microbiology.

[6]  H. Nikaido Preventing drug access to targets: cell surface permeability barriers and active efflux in bacteria. , 2001, Seminars in cell & developmental biology.

[7]  P. H. Roy,et al.  Transposon Tn5090 of plasmid R751, which carries an integron, is related to Tn7, Mu, and the retroelements , 1994, Journal of bacteriology.

[8]  J. Mekalanos,et al.  In vivo expression technology for selection of bacterial genes specifically induced in host tissues. , 1994, Methods in enzymology.

[9]  D. Andersson,et al.  Biological cost and compensatory evolution in fusidic acid‐resistant Staphylococcus aureus , 2001, Molecular microbiology.

[10]  F. Taddei,et al.  High Frequency of Mutator Strains among Human Uropathogenic Escherichia coli Isolates , 2002, Journal of bacteriology.

[11]  Hiroshi Nikaido,et al.  Multidrug resistance mechanisms: drug efflux across two membranes , 2000, Molecular microbiology.

[12]  T. Grundström,et al.  The E. coli beta-lactamase attenuator mediates growth rate-dependent regulation. , 1981, Nature.

[13]  A. Tomasz,et al.  Mechanism of action of penicillin: triggering of the pneumococcal autolytic enzyme by inhibitors of cell wall synthesis. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[14]  T. Grundström,et al.  Sequence elements determining ampC promoter strength in E. coli. , 1982, The EMBO journal.

[15]  Claude Carbón,et al.  Complex relationship between acquisition of beta-lactam resistance and loss of virulence in Streptococcus pneumoniae. , 2001, The Journal of infectious diseases.

[16]  S. Normark,et al.  Common mechanism of ampC beta-lactamase induction in enterobacteria: regulation of the cloned Enterobacter cloacae P99 beta-lactamase gene , 1987, Journal of bacteriology.

[17]  F. Baquero Resistance to quinolones in gram-negative microorganisms: mechanisms and prevention. , 1990, European urology.

[18]  P. Bradford Extended-Spectrum β-Lactamases in the 21st Century: Characterization, Epidemiology, and Detection of This Important Resistance Threat , 2001, Clinical Microbiology Reviews.

[19]  Kim Rutherford,et al.  Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18 , 2001, Nature.

[20]  F. Tenover,et al.  A global gene pool for high-level cephalosporin resistance in commensal Streptococcus species and Streptococcus pneumoniae. , 1997, The Journal of infectious diseases.

[21]  L. Gutmann,et al.  Acquisition of Five High-MrPenicillin-Binding Protein Variants during Transfer of High-Level β-Lactam Resistance from Streptococcus mitis toStreptococcus pneumoniae , 1998, Journal of bacteriology.

[22]  S. Lindquist,et al.  Signalling proteins in enterobacterial AmpC beta-lactamase regulation. , 1989, Molecular microbiology.

[23]  N. Gotoh,et al.  Characterization of MexE–MexF–OprN, a positively regulated multidrug efflux system of Pseudomonas aeruginosa , 1997, Molecular microbiology.

[24]  R. Bonomo,et al.  SHV-type beta-lactamases. , 1999, Current pharmaceutical design.

[25]  R. Gómez-Lus,et al.  Evolution of bacterial resistance to antibiotics during the last three decades. , 1998, International microbiology : the official journal of the Spanish Society for Microbiology.

[26]  J. Musser,et al.  Molecular genetic basis of antimicrobial agent resistance in Mycobacterium tuberculosis: 1998 update. , 1998, Tubercle and lung disease : the official journal of the International Union against Tuberculosis and Lung Disease.

[27]  J. Shapiro,et al.  Transposition of a beta-lactamase locus from RP1 into Pseudomonas putida degradative plasmids , 1977, Journal of bacteriology.

[28]  N. Datta,et al.  Mutant Drug Resistant Factors of High Transmissibility , 1967, Nature.

[29]  P. White,et al.  Integrons and Gene Cassettes in theEnterobacteriaceae , 2001, Antimicrobial Agents and Chemotherapy.

[30]  D. Alland,et al.  Molecular determinants of drug resistance in tuberculosis. , 2000, The international journal of tuberculosis and lung disease : the official journal of the International Union against Tuberculosis and Lung Disease.

[31]  W. Reznikoff,et al.  Tn5/IS50 target recognition. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[32]  H. H. Martin,et al.  AmpG, a signal transducer in chromosomal beta-lactamase induction. , 1993, Molecular microbiology.

[33]  B. Wretlind,et al.  Alterations in GyrA and ParC Associated with Fluoroquinolone Resistance in Enterococcus faecium , 1999, Antimicrobial Agents and Chemotherapy.

[34]  B. Spratt,et al.  Multiply antibiotic-resistant Streptococcus pneumoniae recovered from Spanish hospitals (1988-1994): novel major clones of serotypes 14, 19F and 15F. , 1996, Microbiology.

[35]  R. Hancock,et al.  Negative Regulation of the Pseudomonas aeruginosa Outer Membrane Porin OprD Selective for Imipenem and Basic Amino Acids , 1999, Antimicrobial Agents and Chemotherapy.

[36]  J. Frère,et al.  Cytosolic Intermediates for Cell Wall Biosynthesis and Degradation Control Inducible β-Lactam Resistance in Gram-Negative Bacteria , 1997, Cell.

[37]  T. Köhler,et al.  C-Terminal Region of Pseudomonas aeruginosa Outer Membrane Porin OprD Modulates Susceptibility to Meropenem , 2001, Antimicrobial Agents and Chemotherapy.

[38]  Manuel Peitsch,et al.  A genome-based approach for the identification of essential bacterial genes , 1998, Nature Biotechnology.

[39]  M. Galleni,et al.  Signalling proteins in enterobacterial AmpC β‐lactamase regulation , 1989 .

[40]  S. Normark,et al.  Purification and mutant analysis of Citrobacter freundii AmpR, the regulator for chromosomal AmpC β‐lactamase , 1991, Molecular microbiology.

[41]  T. Grundström,et al.  Isolation and characterization of DNA repetitions carrying the chromosomal β-lactamase gene of Escherichia coli K-12 , 1979, Molecular and General Genetics MGG.

[42]  P. H. Roy,et al.  Oligonucleotide probes for the detection of TEM-1 and TEM-2 beta-lactamase genes and their transposons. , 1987, Canadian journal of microbiology.

[43]  S. Normark,et al.  Emergence of vancomycin tolerance in Streptococcus pneumoniae , 1999, Nature.

[44]  L Sundström,et al.  The Potential of Integrons and Connected Programmed Rearrangements for Mediating Horizontal Gene Transfer , 1998, APMIS. Supplementum.

[45]  T. Marrie,et al.  Molecular epidemiology of Streptococcus pneumoniae causing invasive disease in 5 countries. , 2000, The Journal of infectious diseases.

[46]  N. Høiby,et al.  Rapid emergence of resistance in Pseudomonas aeruginosa in cystic fibrosis patients due to in-vivo selection of stable partially derepressed beta-lactamase producing strains. , 1990, The Journal of antimicrobial chemotherapy.

[47]  Nanne Nanninga,et al.  Morphogenesis of Escherichia coli , 1998, Microbiology and Molecular Biology Reviews.

[48]  H. Nikaido,et al.  High-Level Fluoroquinolone-Resistant Clinical Isolates of Escherichia coli Overproduce Multidrug Efflux Protein AcrA , 2000, Antimicrobial Agents and Chemotherapy.

[49]  Angela Lee,et al.  Identification and Characterization of Inhibitors of Multidrug Resistance Efflux Pumps in Pseudomonas aeruginosa: Novel Agents for Combination Therapy , 2001, Antimicrobial Agents and Chemotherapy.

[50]  K. Poole,et al.  Multidrug efflux pumps and antimicrobial resistance in Pseudomonas aeruginosa and related organisms. , 2001, Journal of molecular microbiology and biotechnology.

[51]  G. Chiosis,et al.  Selective Cleavage of D-Ala-D-Lac by Small Molecules: Re-Sensitizing Resistant Bacteria to Vancomycin , 2001, Science.

[52]  S. Szu,et al.  Covalent linkage between the capsular polysaccharide and the cell wall peptidoglycan of Streptococcus pneumoniae revealed by immunochemical methods. , 1990, Microbial pathogenesis.

[53]  W. L. Payne,et al.  High Mutation Frequencies Among Escherichia coli and Salmonella Pathogens , 1996, Science.

[54]  N. Datta,et al.  Transposition of a deoxyribonucleic acid sequence encoding trimethoprim and streptomycin resistances from R483 to other replicons , 1976, Journal of bacteriology.

[55]  P. Sansonetti,et al.  Microbes and Microbial Toxins : Paradigms for Microbial-Mucosal Interactions III . Shigellosis : from symptoms to molecular pathogenesis , 2001 .

[56]  J. Tobias,et al.  Antibiotic-based selection for bacterial genes that are specifically induced during infection of a host. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[57]  O. Sköld,et al.  Genetic analyses of sulfonamide resistance and its dissemination in gram-negative bacteria illustrate new aspects of R plasmid evolution , 1991, Antimicrobial Agents and Chemotherapy.

[58]  R. Hall,et al.  Transposons Tn1696 and Tn21and Their Integrons In4 and In2 Have Independent Origins , 2001, Antimicrobial Agents and Chemotherapy.

[59]  H. H. Martin,et al.  AmpG, a signal transducer in chromosomal β‐lactamase induction , 1993 .

[60]  Jorge E. Galán,et al.  Structural mimicry in bacterial virulence , 2001, Nature.

[61]  B. Spratt,et al.  Interspecies recombination between the penA genes of Neisseria meningitidis and commensal Neisseria species during the emergence of penicillin resistance in N. meningitidis: natural events and laboratory simulation , 1994, Journal of bacteriology.

[62]  N. Hanson,et al.  Regulation of inducible AmpC beta-lactamase expression among Enterobacteriaceae. , 1999, Current pharmaceutical design.

[63]  J. Zhou,et al.  Dynamics of penicillin-susceptible clones in invasive pneumococcal disease. , 2001, The Journal of infectious diseases.

[64]  A. Ortqvist,et al.  Changes in serotype distribution may hamper efficacy of pneumococcal conjugate vaccines in children. , 2001, Scandinavian journal of infectious diseases.

[65]  T. Grundström,et al.  The E. coli β-lactamase attenuator mediates growth rate-dependent regulation , 1981, Nature.

[66]  B. Neville,et al.  HYPERFLEXION CERVICAL CORD INJURY IN A CHILDREN'S CAR SEAT , 1981, The Lancet.

[67]  M. Jacobs,et al.  Single- and multi-step resistance selection study of gemifloxacin compared with trovafloxacin, ciprofloxacin, gatifloxacin and moxifloxacin in Streptococcus pneumoniae. , 2001, The Journal of antimicrobial chemotherapy.

[68]  K. Lewis,et al.  Biofilms and Planktonic Cells of Pseudomonas aeruginosa Have Similar Resistance to Killing by Antimicrobials , 2001, Journal of bacteriology.

[69]  S. Lindquist,et al.  Inactivation of the ampD gene causes semiconstitutive overproduction of the inducible Citrobacter freundii beta-lactamase , 1987, Journal of bacteriology.

[70]  S. Normark,et al.  Insertion of IS2 creates a novel ampC promoter in Escherichia coli , 1983, Cell.

[71]  Martin C. J. Maiden,et al.  Database-driven Multi Locus Sequence Typing (MLST) of bacterial pathogens , 2001, Bioinform..

[72]  K. Drlica,et al.  Fluoroquinolone-resistant Streptococcus pneumoniae associated with levofloxacin therapy. , 2001, The Journal of infectious diseases.

[73]  D. Andersson,et al.  Virulence of antibiotic-resistant Salmonella typhimurium. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[74]  J. Lupski Molecular mechanisms for transposition of drug-resistance genes and other movable genetic elements. , 1987, Reviews of infectious diseases.

[75]  S. Normark,et al.  Regulatory components in Citrobacter freundii ampC beta-lactamase induction. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[76]  Ian Phillips,et al.  &bgr;-LACTAMASE-PRODUCING, PENICILLIN-RESISTANT GONOCOCCUS , 1976, The Lancet.

[77]  H. Nikaido,et al.  Role of mexA-mexB-oprM in antibiotic efflux in Pseudomonas aeruginosa , 1995, Antimicrobial agents and chemotherapy.

[78]  S. Hultgren,et al.  Establishment of a Persistent Escherichia coli Reservoir during the Acute Phase of a Bladder Infection , 2001, Infection and Immunity.

[79]  A. Tomasz,et al.  The murMN operon: A functional link between antibiotic resistance and antibiotic tolerance in Streptococcus pneumoniae , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[80]  Teruyo Ito,et al.  A New Class of Genetic Element, Staphylococcus Cassette Chromosome mec, Encodes Methicillin Resistance in Staphylococcus aureus , 2000, Antimicrobial Agents and Chemotherapy.

[81]  B. Levin,et al.  The biological cost of antibiotic resistance. , 1999, Current opinion in microbiology.

[82]  O. Berg,et al.  Mutation frequency and biological cost of antibiotic resistance in Helicobacter pylori , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[83]  O. Sköld Resistance to trimethoprim and sulfonamides. , 2001, Veterinary research.

[84]  George A. Jacoby,et al.  Plasmid-Determined AmpC-Type β-Lactamases , 2002, Antimicrobial Agents and Chemotherapy.

[85]  S. Normark,et al.  Identification of a novel ampC beta‐lactamase promoter in a clinical isolate of Escherichia coli. , 1982, The EMBO journal.

[86]  R. Hancock,et al.  Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and impact on treatment. , 2000, Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy.

[87]  H. Nikaido Crossing the envelope: how cephalosporins reach their targets. , 2000, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[88]  S. Normark,et al.  Clinical isolates of Streptococcus pneumoniae that exhibit tolerance of vancomycin. , 2001, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[89]  J. Frère,et al.  AmpD, essential for both β‐lactamase regulation and cell wall recycling, is a novel cytosolic N‐acetylmuramyl‐L‐alanine amidase , 1995, Molecular microbiology.

[90]  J. Williams,et al.  Letter: Penicillinase production by Haemophilus influenzae. , 1974, Lancet.

[91]  M. Zasloff Antimicrobial peptides of multicellular organisms , 2002, Nature.

[92]  A. Tomasz From penicillin-binding proteins to the lysis and death of bacteria: a 1979 view. , 1979, Reviews of infectious diseases.

[93]  K. Poole,et al.  MexR Repressor of the mexAB-oprMMultidrug Efflux Operon of Pseudomonas aeruginosa: Identification of MexR Binding Sites in the mexA-mexRIntergenic Region , 2001, Journal of bacteriology.

[94]  U. Hentschel,et al.  Bacterial infection as assessed by in vivo gene expression. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[95]  P. Sansonetti III. Shigellosis: from symptoms to molecular pathogenesis , 2001 .

[96]  Roger E. Bumgarner,et al.  Gene expression in Pseudomonas aeruginosa biofilms , 2001, Nature.

[97]  M. Tsuda,et al.  Characterization of the MexC-MexD-OprJ Multidrug Efflux System in ΔmexA-mexB-oprM Mutants of Pseudomonas aeruginosa , 1998, Antimicrobial Agents and Chemotherapy.

[98]  O. Berg,et al.  Effects of environment on compensatory mutations to ameliorate costs of antibiotic resistance. , 2000, Science.

[99]  S. Normark,et al.  Bacterial cell wall recycling provides cytosolic muropeptides as effectors for beta‐lactamase induction. , 1994, The EMBO journal.

[100]  A. Tomasz,et al.  An acquired and a native penicillin-binding protein cooperate in building the cell wall of drug-resistant staphylococci , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[101]  E. Charpentier,et al.  Mechanisms of antibiotic resistance and tolerance in Streptococcus pneumoniae. , 2000, Microbes and infection.

[102]  B. Jennett,et al.  SURGICAL TRAINING , 1975, The Lancet.

[103]  A. Tomasz,et al.  Inhibition of the expression of penicillin resistance in Streptococcus pneumoniae by inactivation of cell wall muropeptide branching genes. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[104]  R. Novick,et al.  Penicillinase plasmids of Staphylococcus aureus: restriction-deletion maps. , 1979, Plasmid.

[105]  B. Petrini,et al.  Drug-resistant and multidrug-resistant tubercle bacilli. , 1999, International journal of antimicrobial agents.

[106]  B. Spratt,et al.  Interspecies recombinational events during the evolution of altered PBP 2x genes in penicillin‐resistant clinical isolates of Streptococcus pneumoniae , 1991, Molecular microbiology.

[107]  E. Charpentier,et al.  Signal transduction by a death signal peptide: uncovering the mechanism of bacterial killing by penicillin. , 2000, Molecular cell.

[108]  R M Hall,et al.  Site‐specific insertion of genes into integrons: role of the 59‐base element and determination of the recombination cross‐over point , 1991, Molecular microbiology.

[109]  N. Høiby,et al.  Molecular Mechanisms of Fluoroquinolone Resistance in Pseudomonas aeruginosa Isolates from Cystic Fibrosis Patients , 2000, Antimicrobial Agents and Chemotherapy.

[110]  B W Glickman,et al.  Escherichia coli mutator mutants deficient in methylation-instructed DNA mismatch correction. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[111]  L. Rice,et al.  Genetic Linkage and Cotransfer of a Novel,vanB-Containing Transposon (Tn5382) and a Low-Affinity Penicillin-Binding Protein 5 Gene in a Clinical Vancomycin-Resistant Enterococcus faecium Isolate , 1998, Journal of bacteriology.

[112]  N. Gotoh,et al.  Rapid identification of mutations in a multidrug efflux pump in Pseudomonas aeruginosa , 1999, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[113]  K. Poole,et al.  Overexpression of the mexC–mexD–oprJ efflux operon in nfxB‐type multidrug‐resistant strains of Pseudomonas aeruginosa , 1996, Molecular microbiology.