ECC, an extended calculus of constructions
暂无分享,去创建一个
[1] David B. MacQueen. Using dependent types to express modular structure , 1986, POPL '86.
[2] Andrew M. Pitts,et al. Polymorphism is Set Theoretic, Constructively , 1987, Category Theory and Computer Science.
[3] Thierry Coquand,et al. An Analysis of Girard's Paradox , 1986, LICS.
[4] Alonzo Church,et al. A formulation of the simple theory of types , 1940, Journal of Symbolic Logic.
[5] A. Troelstra. Metamathematical investigation of intuitionistic arithmetic and analysis , 1973 .
[6] Thierry Coquand,et al. The Calculus of Constructions , 1988, Inf. Comput..
[7] P. Martin-Löf. An Intuitionistic Theory of Types: Predicative Part , 1975 .
[8] D. Prawitz. Natural Deduction: A Proof-Theoretical Study , 1965 .
[9] John C. Mitchell,et al. Abstract types have existential type , 1988, TOPL.
[10] Zhaohui Luo,et al. A Higher-Order Calculus and Theory Abstraction , 1991, Inf. Comput..
[11] Rod M. Burstall,et al. Structured Theories in LCF , 1983, CAAP.
[12] Andrew M. Pitts,et al. The theory of constructions: Categorical semantics and topos-theoretic models , 1987 .
[13] John C. Mitchell,et al. Abstract types have existential types , 1985, POPL.
[14] Rod M. Burstall,et al. Programming with Modules as Typed Functional Programming , 1984, FGCS.
[15] Butler W. Lampson,et al. Pebble, a Kernel Language for Modules and Abstract Data Types , 1988, Inf. Comput..
[16] Thierry Coquand,et al. Constructions: A Higher Order Proof System for Mechanizing Mathematics , 1985, European Conference on Computer Algebra.
[17] Jan Willem Klop,et al. Combinatory reduction systems , 1980 .
[18] Per Martin-Löf,et al. Intuitionistic type theory , 1984, Studies in proof theory.
[19] Martin Hyland. A small complete category , 1988, Ann. Pure Appl. Log..
[20] John C. Reynolds,et al. Polymorphism is not Set-Theoretic , 1984, Semantics of Data Types.
[21] Jean-Yves Girard,et al. The System F of Variable Types, Fifteen Years Later , 1986, Theor. Comput. Sci..
[22] T. Coquand. Une théorie des constructions , 1985 .
[23] John C. Reynolds,et al. Towards a theory of type structure , 1974, Symposium on Programming.
[24] Robert Harper,et al. Type Checking, Universe Polymorphism, and Typical Ambiguity in the Calculus of Constructions (Draft) , 1989, TAPSOFT, Vol.2.
[25] Thomas Ehrhard. A categorical semantics of constructions , 1988, [1988] Proceedings. Third Annual Information Symposium on Logic in Computer Science.