Iterative actions of normal operators

Let $A$ be a normal operator in a Hilbert space $\mathcal{H}$, and let $\mathcal{G} \subset \mathcal{H}$ be a countable set of vectors. We investigate the relations between $A$, $\mathcal{G}$ , and $L$ that makes the system of iterations $\{A^ng: g\in \mathcal{G},\;0\leq n< L(g)\}$ complete, Bessel, a basis, or a frame for $\mathcal{H}$. The problem is motivated by the dynamical sampling problem and is connected to several topics in functional analysis, including, frame theory and spectral theory. It also has relations to topics in applied harmonic analysis including, wavelet theory and time-frequency analysis.

[1]  Ole Christensen,et al.  Frames and Bases , 2008 .

[2]  Akram Aldroubi,et al.  Exact Reconstruction of Spatially Undersampled Signals in Evolutionary Systems , 2013, ArXiv.

[3]  N. Nikol’skiĭ,et al.  Treatise on the Shift Operator , 1986 .

[4]  M. Zuhair Nashed,et al.  Sampling and Reconstruction of Signals in a Reproducing Kernel Subspace of $L^p({\Bbb R}^d)$ , 2009, ArXiv.

[5]  Deguang Han,et al.  The existence of tight Gabor duals for Gabor frames and subspace Gabor frames , 2009 .

[6]  D. Larson,et al.  Signal Reconstruction from Frame and Sampling Erasures , 2014, 1409.5385.

[7]  Y. Katznelson An Introduction to Harmonic Analysis: Interpolation of Linear Operators , 1968 .

[8]  Qiyu Sun,et al.  Localized nonlinear functional equations and two sampling problems in signal processing , 2013, Advances in Computational Mathematics.

[9]  R. Cooke Real and Complex Analysis , 2011 .

[10]  Carlos S. Kubrusly,et al.  Spectral Theory of Operators in Hilbert Space , 1974 .

[11]  D. Spielman,et al.  Interlacing Families II: Mixed Characteristic Polynomials and the Kadison-Singer Problem , 2013, 1306.3969.

[12]  Deguang Han,et al.  Frames, bases, and group representations , 2000 .

[13]  P. Casazza,et al.  The Kadison–Singer Problem in mathematics and engineering , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[14]  M. Nashed,et al.  Sampling and Reconstruction of Signals in a Reproducing Kernel Subspace of $L^p({\Bbb R}^d)$ , 2009, ArXiv.

[15]  P. Porcelli,et al.  An equivalent formulation of the invariant subspace conjecture , 1972 .

[16]  Multicyclicity Phenomenon. I. An Introduction and Maxi-Formulas , 1989 .

[17]  J. Wermer On invariant subspaces of normal operators , 1952 .

[18]  P. Jorgensen,et al.  Unitary groups and spectral sets , 2012, 1205.4351.

[19]  C. Heil A basis theory primer , 2011 .

[20]  A. Aldroubi,et al.  SLANTED MATRICES, BANACH FRAMES, AND SAMPLING , 2007, 0705.4304.

[21]  A. Mayeli,et al.  Coorbit Description and Atomic Decomposition of Besov Spaces , 2011, 1110.6676.

[22]  Thomas L. Kriete An elementary approach to the multiplicity theory of multiplication operators , 1986 .

[23]  On subnormal operators , 1986 .

[24]  D. Barbieri,et al.  Riesz and frame systems generated by unitary actions of discrete groups , 2014, 1402.2177.

[25]  John J. Benedetto,et al.  Applied and numerical harmonic analysis , 1997 .

[26]  Darrin Speegle,et al.  The Feichtinger Conjecture for Wavelet Frames, Gabor Frames and Frames of Translates , 2006, Canadian Journal of Mathematics.

[27]  José Luis Romero,et al.  On Minimal Trajectories for Mobile Sampling of Bandlimited Fields , 2013, ArXiv.

[28]  Chengchun Hao Introduction to Harmonic Analysis , 2016 .

[29]  O. Christensen Frames and Bases: An Introductory Course , 2008 .

[30]  P. Jorgensen,et al.  Spectra of measures and wandering vectors , 2012, 1209.0664.

[31]  D. Barbieri,et al.  The Zak transform and the structure of spaces invariant by the action of an LCA group , 2014, 1410.7250.

[32]  K. Grōchenig,et al.  Deformation of Gabor systems , 2013, 1311.3861.

[33]  A. Aldroubi,et al.  Dynamical sampling , 2014, 1409.8333.

[34]  Akram Aldroubi,et al.  Exact Reconstruction of Signals in Evolutionary Systems Via Spatiotemporal Trade-off , 2015 .

[35]  Paul R. Halmos,et al.  Normal Dilations and Extensions of Operators , 1983 .

[36]  Martin Vetterli,et al.  Distributed Sampling of Signals Linked by Sparse Filtering: Theory and Applications , 2010, IEEE Transactions on Signal Processing.

[37]  D. Whittaker,et al.  A Course in Functional Analysis , 1991, The Mathematical Gazette.

[38]  Unconditional bases of invariant subspaces of a contraction with finite defects , 1996, math/9601211.

[39]  Qiyu Sun,et al.  Local reconstruction for sampling in shift-invariant spaces , 2010, Adv. Comput. Math..

[40]  R. Duffin,et al.  A class of nonharmonic Fourier series , 1952 .

[41]  Karin Rothschild,et al.  A Course In Functional Analysis , 2016 .