III–V semiconductor nanocrystal formation in silicon nanowires via liquid-phase epitaxy
暂无分享,去创建一个
Alois Lugstein | Lars Rebohle | Wolfgang Skorupa | Manfred Helm | Michael Stöger-Pollach | Emmerich Bertagnolli | M. Helm | E. Bertagnolli | Shengqiang Zhou | L. Rebohle | S. Prucnal | W. Skorupa | M. Stöger-Pollach | M. Turek | A. Lugstein | Shengqiang Zhou | J. Żuk | Slawomir Prucnal | Marcin Turek | D. Reichel | Markus Glaser | Denis Reichel | Jerzy Zuk | M. Glaser
[1] Wei Lu,et al. Nanowire Transistor Performance Limits and Applications , 2008, IEEE Transactions on Electron Devices.
[2] G. J. Galvin,et al. Melting temperature and explosive crystallization of amorphous silicon during pulsed laser irradiation , 1984 .
[3] Florian Siegert,et al. Epitaxial core – shell and core – multishell nanowire heterostructures , 2002 .
[4] Val Zwiller,et al. Growth and optical properties of axial hybrid III-V/silicon nanowires. , 2012, Nature communications.
[5] W. Skorupa,et al. Advanced Thermal Processing of Ultrashallow Implanted Junctions Using Flash Lamp Annealing , 2005 .
[6] Tomoko Fujiwara,et al. Explosive crystallization of amorphous silicon films by flash lamp annealing , 2009 .
[7] Qing Peng,et al. Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes , 2005 .
[8] U. Chettiar,et al. An invisible metal–semiconductor photodetector , 2012, Nature Photonics.
[9] G. Fagas,et al. Electrical performance of III-V gate-all-around nanowire transistors , 2013 .
[10] E. Glaser,et al. Explosive crystallization in silicon , 1986 .
[11] J. Alamo. Nanometre-scale electronics with III–V compound semiconductors , 2011, Nature.
[12] T. Fukui,et al. A III–V nanowire channel on silicon for high-performance vertical transistors , 2012, Nature.
[13] C. Chang-Hasnain,et al. Unconventional growth mechanism for monolithic integration of III-V on silicon. , 2013, ACS nano.
[14] Chi-Woo Lee,et al. Nanowire transistors without junctions. , 2010, Nature nanotechnology.
[15] Charles M. Lieber,et al. Ge/Si nanowire heterostructures as high-performance field-effect transistors , 2006, Nature.
[16] Charles M. Lieber,et al. High Performance Silicon Nanowire Field Effect Transistors , 2003 .
[17] E. Bertagnolli,et al. Pressure-induced orientation control of the growth of epitaxial silicon nanowires. , 2008, Nano letters.
[18] O Brandt,et al. Current path in light emitting diodes based on nanowire ensembles , 2012, Nanotechnology.
[19] M. Helm,et al. n-InAs nanopyramids fully integrated into silicon. , 2011, Nano letters.
[20] J. Garandet. New Determinations of Diffusion Coefficients for Various Dopants in Liquid Silicon , 2007 .
[21] M. Helm,et al. III-V/Si on silicon-on-insulator platform for hybrid nanoelectronics , 2014 .
[22] Heike Riel,et al. Trap-assisted tunneling in Si-InAs nanowire heterojunction tunnel diodes. , 2011, Nano letters.
[23] Lars Samuelson,et al. The morphology of axial and branched nanowire heterostructures. , 2007, Nano letters.
[24] A. Kanjilal,et al. Formation of InAs quantum dots in silicon by sequential ion implantation and flash lamp annealing , 2010 .
[25] InP nanocrystals on silicon for optoelectronic applications. , 2012, Nanotechnology.
[26] W. Martienssen,et al. Springer handbook of condensed matter and materials data , 2005 .
[27] S. Pisana,et al. Ion beam doping of silicon nanowires. , 2008, Nano letters.
[28] M. Voelskow,et al. Modeling and regrowth mechanisms of flash lamp processing of SiC-on-silicon heterostructures , 2004 .
[29] Matthew Meitl,et al. Wafer-scale integration of group III–V lasers on silicon using transfer printing of epitaxial layers , 2012, Nature Photonics.
[30] Zhong Lin Wang,et al. Self-powered nanowire devices. , 2010, Nature nanotechnology.