III–V semiconductor nanocrystal formation in silicon nanowires via liquid-phase epitaxy

AbstractDirect integration of high-mobility III–V compound semiconductors with existing Si-based complementary metal-oxide-semiconductor (CMOS) processing platforms presents the main challenge to increasing the CMOS performance and the scaling trend. Silicon hetero-nanowires with integrated III–V segments are one of the most promising candidates for advanced nano-optoelectronics, as first demonstrated using molecular beam epitaxy techniques. Here we demonstrate a novel route for InAs/Si hybrid nanowire fabrication via millisecond range liquid-phase epitaxy regrowth using sequential ion beam implantation and flash-lamp annealing. We show that such highly mismatched systems can be monolithically integrated within a single nanowire. Optical and microstructural investigations confirm the high quality hetero-nanowire fabrication coupled with the formation of atomically sharp interfaces between Si and InAs segments. Such hybrid systems open new routes for future high-speed and multifunctional nanoelectronic devices on a single chip.

[1]  Wei Lu,et al.  Nanowire Transistor Performance Limits and Applications , 2008, IEEE Transactions on Electron Devices.

[2]  G. J. Galvin,et al.  Melting temperature and explosive crystallization of amorphous silicon during pulsed laser irradiation , 1984 .

[3]  Florian Siegert,et al.  Epitaxial core – shell and core – multishell nanowire heterostructures , 2002 .

[4]  Val Zwiller,et al.  Growth and optical properties of axial hybrid III-V/silicon nanowires. , 2012, Nature communications.

[5]  W. Skorupa,et al.  Advanced Thermal Processing of Ultrashallow Implanted Junctions Using Flash Lamp Annealing , 2005 .

[6]  Tomoko Fujiwara,et al.  Explosive crystallization of amorphous silicon films by flash lamp annealing , 2009 .

[7]  Qing Peng,et al.  Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes , 2005 .

[8]  U. Chettiar,et al.  An invisible metal–semiconductor photodetector , 2012, Nature Photonics.

[9]  G. Fagas,et al.  Electrical performance of III-V gate-all-around nanowire transistors , 2013 .

[10]  E. Glaser,et al.  Explosive crystallization in silicon , 1986 .

[11]  J. Alamo Nanometre-scale electronics with III–V compound semiconductors , 2011, Nature.

[12]  T. Fukui,et al.  A III–V nanowire channel on silicon for high-performance vertical transistors , 2012, Nature.

[13]  C. Chang-Hasnain,et al.  Unconventional growth mechanism for monolithic integration of III-V on silicon. , 2013, ACS nano.

[14]  Chi-Woo Lee,et al.  Nanowire transistors without junctions. , 2010, Nature nanotechnology.

[15]  Charles M. Lieber,et al.  Ge/Si nanowire heterostructures as high-performance field-effect transistors , 2006, Nature.

[16]  Charles M. Lieber,et al.  High Performance Silicon Nanowire Field Effect Transistors , 2003 .

[17]  E. Bertagnolli,et al.  Pressure-induced orientation control of the growth of epitaxial silicon nanowires. , 2008, Nano letters.

[18]  O Brandt,et al.  Current path in light emitting diodes based on nanowire ensembles , 2012, Nanotechnology.

[19]  M. Helm,et al.  n-InAs nanopyramids fully integrated into silicon. , 2011, Nano letters.

[20]  J. Garandet New Determinations of Diffusion Coefficients for Various Dopants in Liquid Silicon , 2007 .

[21]  M. Helm,et al.  III-V/Si on silicon-on-insulator platform for hybrid nanoelectronics , 2014 .

[22]  Heike Riel,et al.  Trap-assisted tunneling in Si-InAs nanowire heterojunction tunnel diodes. , 2011, Nano letters.

[23]  Lars Samuelson,et al.  The morphology of axial and branched nanowire heterostructures. , 2007, Nano letters.

[24]  A. Kanjilal,et al.  Formation of InAs quantum dots in silicon by sequential ion implantation and flash lamp annealing , 2010 .

[25]  InP nanocrystals on silicon for optoelectronic applications. , 2012, Nanotechnology.

[26]  W. Martienssen,et al.  Springer handbook of condensed matter and materials data , 2005 .

[27]  S. Pisana,et al.  Ion beam doping of silicon nanowires. , 2008, Nano letters.

[28]  M. Voelskow,et al.  Modeling and regrowth mechanisms of flash lamp processing of SiC-on-silicon heterostructures , 2004 .

[29]  Matthew Meitl,et al.  Wafer-scale integration of group III–V lasers on silicon using transfer printing of epitaxial layers , 2012, Nature Photonics.

[30]  Zhong Lin Wang,et al.  Self-powered nanowire devices. , 2010, Nature nanotechnology.