Chapter 1 DATA MINING FOR FINANCIAL APPLICATIONS

In this paper we consider a new strategy for supporting timing decisions in stock markets. The approach uses the logic data miner Lsquare, based on logic optimisation techniques. We adopt a novel concept of good session, based on the best return expected within a given time horizon. Such definition links indirectly the buying decision with the selling decision and make it possible to exploit particular features of stock time series. The method is translated into an investment strategy and then it is compared with the standard buy & hold strategy.

[1]  Peter A. Flach,et al.  1BC2: A True First-Order Bayesian Classifier , 2002, ILP.

[2]  J. Bouchaud,et al.  Theory of financial risks : from statistical physics to risk management , 2000 .

[3]  Eric R. Ziegel,et al.  Analysis of Financial Time Series , 2002, Technometrics.

[4]  Andreas S. Weigend,et al.  Data Mining for Financial Decision Making , 2002 .

[5]  Paul A. Samuelson,et al.  The judgment of economic science on rational portfolio management , 1989 .

[6]  Stefan Zemke,et al.  Data mining for prediction - financial series case , 2003 .

[7]  Russell L. Purvis,et al.  Stock market trading rule discovery using technical charting heuristics , 2002, Expert Syst. Appl..

[8]  Steven Walczak,et al.  An Empirical Analysis of Data Requirements for Financial Forecasting with Neural Networks , 2001, J. Manag. Inf. Syst..

[9]  E. Fama,et al.  Efficient Capital Markets : II , 2007 .

[10]  Klaus Truemper,et al.  Design of Logic-based Intelligent Systems: Truemper/Intelligent Systems , 2005 .

[11]  Roman Słowiński,et al.  Intelligent Decision Support , 1992, Theory and Decision Library.

[12]  Hans-Martin Krolzig,et al.  Multiperiod forecasting in stock markets: a paradox solved , 2004, Decis. Support Syst..

[13]  Siddhartha Bhattacharyya,et al.  Adequacy of training data for evolutionary mining of trading rules , 2004, Decis. Support Syst..

[14]  Toshihide Ibaraki,et al.  Logical Analysis of Binary Data with Missing Bits , 1999, Artif. Intell..

[15]  MSc BSc Jason Kingdon PhD Intelligent Systems and Financial Forecasting , 1997, Perspectives in Neural Computing.

[16]  S. Zemke,et al.  On Developing a Financial Prediction System : Pitfalls and Possibilities , 2002 .

[17]  G. E. Pinches,et al.  The Random Walk Hypothesis and Technical Analysis , 1970 .

[18]  Thomas G. Dietterich What is machine learning? , 2020, Archives of Disease in Childhood.

[19]  Andrew D. Back,et al.  A First Application of Independent Component Analysis to Extracting Structure from Stock Returns , 1997, Int. J. Neural Syst..

[20]  Constantin von Altrock,et al.  Fuzzy Logic and NeuroFuzzy Applications in Business and Finance , 1996 .

[21]  Bruce D. Fielitz On the Random Walk Hypothesis , 1971 .

[22]  Evangelos Triantaphyllou,et al.  On the minimum number of logical clauses inferred from examples , 1996, Comput. Oper. Res..

[23]  Nikolaos F. Matsatsinis,et al.  Intelligent Decision Support Methods , 2003 .

[24]  Ah Chung Tsoi,et al.  Rule inference for financial prediction using recurrent neural networks , 1997, Proceedings of the IEEE/IAFE 1997 Computational Intelligence for Financial Engineering (CIFEr).

[25]  Stephen Muggleton,et al.  Scientific knowledge discovery using inductive logic programming , 1999, Commun. ACM.

[26]  John Wang,et al.  Data Mining: Opportunities and Challenges , 2003 .

[27]  Jess Lederman,et al.  Artificial Intelligence in the Capital Markets: State-of-the-Art Applications for Institutional Investors, Bankers and Traders , 1994 .

[28]  Matthew Saffell,et al.  Learning to trade via direct reinforcement , 2001, IEEE Trans. Neural Networks.

[29]  Karl Rihaczek,et al.  1. WHAT IS DATA MINING? , 2019, Data Mining for the Social Sciences.

[30]  Ivan Bratko,et al.  Applications of inductive logic programming , 1995, CACM.

[31]  Martin J. Pring,et al.  Technical Analysis Explained: The Successful Investor's Guide to Spotting Investment Trends and Turning Points , 1980 .

[32]  H. White,et al.  Data‐Snooping, Technical Trading Rule Performance, and the Bootstrap , 1999 .

[33]  Boris Kovalerchuk,et al.  Consistent and complete data and “expert” mining in medicine , 2003 .

[34]  Peter Dzwig High Performance Computing for Finance , 1995, PARCO.

[35]  Efraim Turban,et al.  Neural Networks in Finance and Investing: Using Artificial Intelligence to Improve Real-World Performance , 1992 .

[36]  Stephen Muggleton,et al.  The Effect of Relational Background Knowledge on Learning of Protein Three-Dimensional Fold Signatures , 2001, Machine Learning.

[37]  Allan Timmermann,et al.  Dangers of Data-Driven Inference: The Case of Calendar Effects in Stock Returns , 1998 .

[38]  S. Prabakaran,et al.  THE STATISTICAL MECHANICS OF FINANCIAL MARKETS , 2007 .

[39]  Nikolay A. KOLCHANOV,et al.  Knowledge Discovery for Gene Regulatory Regions Analysis , 2002 .

[40]  Martin Casdagli,et al.  Nonlinear Modeling And Forecasting , 1992 .

[41]  Bhavani Thuraisingham,et al.  Data Mining: Technologies, Techniques, Tools, and Trends , 1998 .

[42]  Klaus Truemper,et al.  A MINSAT Approach for Learning in Logic Domains , 2002, INFORMS J. Comput..

[43]  Stephen Muggleton,et al.  Learning Structure and Parameters of Stochastic Logic Programs , 2002, ILP.

[44]  Soushan Wu,et al.  Credit rating analysis with support vector machines and neural networks: a market comparative study , 2004, Decis. Support Syst..

[45]  J. Murphy Technical Analysis of the Financial Markets , 1999 .

[46]  E. Fama EFFICIENT CAPITAL MARKETS: A REVIEW OF THEORY AND EMPIRICAL WORK* , 1970 .

[47]  LohHan Tong,et al.  Applying rough sets to market timing decisions , 2004 .

[48]  A. Refenes Neural Networks in the Capital Markets , 1994 .

[49]  Boris Kovalerchuk,et al.  Data mining in finance , 2000 .

[50]  Benoit B. Mandelbrot,et al.  Fractals and Scaling in Finance , 1997 .

[51]  E. Elton Modern portfolio theory and investment analysis , 1981 .

[52]  Gunnar Rätsch,et al.  Using support vector machines for time series prediction , 1999 .

[53]  Steven Walczak,et al.  Knowledge discovery techniques for predicting country investment risk , 2002 .

[54]  Klaus Truemper,et al.  Design of logic-based intelligent systems , 2004 .

[55]  Boris Kovalerchuk,et al.  Data mining in finance: advances in relational and hybrid methods , 2000 .

[56]  Russell L. Purvis,et al.  Forecasting the NYSE composite index with technical analysis, pattern recognizer, neural network, and genetic algorithm: a case study in romantic decision support , 2002, Decis. Support Syst..

[57]  Ruppa K. Thulasiram,et al.  Performance Evaluation of a Multithreaded Fast Fourier Transform Algorithm for Derivative Pricing , 2003, The Journal of Supercomputing.

[59]  Kirill Ilinski,et al.  Physics of Finance: Gauge Modelling in Non-Equilibrium Pricing , 2001 .

[60]  Michael Greenstone,et al.  Are There Sectoral Anomalies Too? The Pitfalls of Unreported Multiple Hypothesis Testing and a Simple Solution , 2000 .

[61]  Jennifer Neville,et al.  Supporting Relational Knowledge Discovery: Lessons in Architecture and Algorithm Design , 2002 .

[62]  J A Lambert,et al.  The impact of the principles of evidence interpretation on the structure and content of statements. , 2000, Science & justice : journal of the Forensic Science Society.

[63]  C.J.H. Mann,et al.  Handbook of Data Mining and Knowledge Discovery , 2004 .

[64]  George M. Frankfurter,et al.  Anomalies in finance: What are they and what are they good for? , 2001 .

[65]  Rosario N. Mantegna,et al.  Book Review: An Introduction to Econophysics, Correlations, and Complexity in Finance, N. Rosario, H. Mantegna, and H. E. Stanley, Cambridge University Press, Cambridge, 2000. , 2000 .