The geometric maximum traveling salesman problem

We consider the traveling salesman problem when the cities are points in &##x211D;<sup><i>d</i></sup> for some fixed <i>d</i> and distances are computed according to geometric distances, determined by some norm. We show that for any polyhedral norm, the problem of finding a tour of <i>maximum</i> length can be solved in polynomial time. If arithmetic operations are assumed to take unit time, our algorithms run in time <i>O</i>(<i>n</i><sup><i>f</i>−2</sup> log <i>n</i>), where <i>f</i> is the number of facets of the polyhedron determining the polyhedral norm. Thus, for example, we have <i>O</i>(<i>n</i><sup>2</sup> log <i>n</i>) algorithms for the cases of points in the plane under the Rectilinear and Sup norms. This is in contrast to the fact that finding a <i>minimum</i> length tour in each case is NP-hard. Our approach can be extended to the more general case of <i>quasi-norms</i> with a not necessarily symmetric unit ball, where we get a complexity of <i>O</i>(<i>n</i><sup>2<i>f</i>−2</sup> log <i>n</i>).For the special case of two-dimensional metrics with <i>f</i> = 4 (which includes the Rectilinear and Sup norms), we present a simple algorithm with <i>O</i>(<i>n</i>) running time. The algorithm does not use any indirect addressing, so its running time remains valid even in comparison based models in which sorting requires Ω(<i>n</i> log <i>n</i>) time. The basic mechanism of the algorithm provides some intuition on why polyhedral norms allow fast algorithms.Complementing the results on simplicity for polyhedral norms, we prove that, for the case of Euclidean distances in &##x211D;<sup><i>d</i></sup> for <i>d</i> ≥ 3, the Maximum TSP is NP-hard. This sheds new light on the well-studied difficulties of Euclidean distances.

[1]  Thomas H. Cormen,et al.  Introduction to algorithms [2nd ed.] , 2001 .

[2]  Eugene L. Lawler,et al.  Traveling Salesman Problem , 2016 .

[3]  Christos H. Papadimitriou,et al.  The Euclidean Traveling Salesman Problem is NP-Complete , 1977, Theor. Comput. Sci..

[4]  Chandrajit L. Bajaj,et al.  The algebraic degree of geometric optimization problems , 1988, Discret. Comput. Geom..

[5]  Alexander I. Barvinok,et al.  Two Algorithmic Results for the Traveling Salesman Problem , 1996, Math. Oper. Res..

[6]  Jayme Luiz Szwarcfiter,et al.  Hamilton Paths in Grid Graphs , 1982, SIAM J. Comput..

[7]  Sándor P. Fekete,et al.  Simplicity and hardness of the maximum traveling salesman problem under geometric distances , 1999, SODA '99.

[8]  Sanjeev Arora,et al.  Polynomial time approximation schemes for Euclidean TSP and other geometric problems , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[9]  Ronald L. Graham,et al.  Some NP-complete geometric problems , 1976, STOC '76.

[10]  Eitan Zemel,et al.  An O(n) Algorithm for the Linear Multiple Choice Knapsack Problem and Related Problems , 1984, Inf. Process. Lett..

[11]  Luca Trevisan,et al.  When Hamming meets Euclid: the approximability of geometric TSP and MST (extended abstract) , 1997, STOC '97.

[12]  Joseph S. B. Mitchell,et al.  A maximumb-matching problem arising from median location models with applications to the roommates problem , 1998, Math. Program..

[13]  Subhash Suri,et al.  Designing Least-Cost Nonblocking Broadband Networks , 1997, J. Algorithms.

[14]  Sanjeev Arora,et al.  Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems , 1998, JACM.

[15]  Clifford Stein,et al.  Introduction to Algorithms, 2nd edition. , 2001 .

[16]  Refael Hassin,et al.  A 7/8-approximation algorithm for metric Max TSP , 2001, Inf. Process. Lett..

[17]  Mihalis Yannakakis,et al.  The Traveling Salesman Problem with Distances One and Two , 1993, Math. Oper. Res..

[18]  Manuel Blum,et al.  Time Bounds for Selection , 1973, J. Comput. Syst. Sci..

[19]  David S. Johnson,et al.  The Planar Hamiltonian Circuit Problem is NP-Complete , 1976, SIAM J. Comput..

[20]  Carsten Lund,et al.  Proof verification and hardness of approximation problems , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[21]  Michael Ben-Or,et al.  Lower bounds for algebraic computation trees , 1983, STOC.

[22]  Carsten Lund,et al.  Proof verification and the hardness of approximation problems , 1998, JACM.

[23]  Takeshi Tokuyama,et al.  Efficient algorithms for the Hitchcock transportation problem , 1992, SODA '92.

[24]  Joseph S. B. Mitchell,et al.  Guillotine Subdivisions Approximate Polygonal Subdivisions: A Simple Polynomial-Time Approximation Scheme for Geometric TSP, k-MST, and Related Problems , 1999, SIAM J. Comput..

[25]  Gerhard J. Woeginger,et al.  The Maximum Traveling Salesman Problem Under Polyhedral Norms , 1998, IPCO.

[26]  Charles U. Martel,et al.  Fast Algorithms for Bipartite Network Flow , 1987, SIAM J. Comput..

[27]  松井 知己 A Linear Time Algorithm for the Hitchcock Transportation Problem with Fixed Number of Supply Points , 1991 .

[28]  Nimrod Megiddo,et al.  Linear time algorithms for some separable quadratic programming problems , 1993, Oper. Res. Lett..

[29]  Tomomi Matsui,et al.  A Linear Time Algorithm for the Hitchcock Transportation Problem with Fixed Number of Supply Points , 1994 .

[30]  Esther M. Arkin,et al.  On the maximum scatter TSP , 1997, SODA '97.

[31]  Robert E. Tarjan,et al.  Improved Algorithms for Bipartite Network Flow , 1994, SIAM J. Comput..

[32]  Sándor P. Fekete,et al.  On Minimum Stars and Maximum Matchings , 2000, Discret. Comput. Geom..