Phase-sensitive amplification of light in a χ(3) photonic chip using a dispersion engineered chalcogenide ridge waveguide.

We report phase-sensitive amplification of light using χ((3)) parametric processes in a chalcogenide ridge waveguide. By spectrally slicing pump, signal and idler waves from a single pulsed source, we are able to observe 9.9 dB of on-chip phase-sensitive extinction with a signal-degenerate dual pump four-wave mixing architecture in good agreement with numerical simulations.

[1]  C. Caves Quantum limits on noise in linear amplifiers , 1982 .

[2]  Francesca Parmigiani,et al.  Phase regeneration of DPSK signals in a highly nonlinear lead-silicate W-type fiber. , 2012, Optics express.

[3]  Joseph Kakande,et al.  Multilevel quantization of optical phase in a novel coherent parametric mixer architecture , 2011 .

[4]  Jochen Schröder,et al.  Photonic chip-based all-optical XOR gate for 40 and 160 Gbit/s DPSK signals. , 2011, Optics letters.

[5]  B. Eggleton,et al.  Dispersion Trimming in a Reconfigurable Wavelength Selective Switch , 2008, Journal of Lightwave Technology.

[6]  J. Leuthold,et al.  Nonlinear silicon photonics , 2010 .

[7]  Premjeet Kumar,et al.  Gain characteristics of a frequency nondegenerate phase-sensitive fiber-optic parametric amplifier with phase self-stabilized input. , 2005, Optics express.

[8]  Naoya Wada,et al.  Phase-squeezing properties of non-degenerate PSAs using PPLN waveguides. , 2011, Optics express.

[9]  S Radic,et al.  Translation of quantum states by four-wave mixing in fibers. , 2005, Optics express.

[10]  David J. Richardson,et al.  All-optical phase and amplitude regenerator for next-generation telecommunications systems , 2010 .

[11]  C J McKinstrie,et al.  Quantum frequency translation of single-photon states in a photonic crystal fiber. , 2010, Physical review letters.

[12]  Steve Madden,et al.  Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides , 2012 .

[13]  A D Ellis,et al.  DPSK Signal Regeneration With a Dual-Pump Nondegenerate Phase-Sensitive Amplifier , 2011, IEEE Photonics Technology Letters.

[14]  Benjamin J. Eggleton,et al.  Dispersion engineering of highly nonlinear As(2)S(3) waveguides for parametric gain and wavelength conversion. , 2007 .

[15]  Repetition-rate-selective, wavelength-tunable mode-locked laser at up to 640 GHz. , 2009, Optics letters.

[16]  Mingyi Gao,et al.  Evolution of the gain extinction ratio in dual-pump phase sensitive amplification. , 2012, Optics letters.

[17]  A. Migdall,et al.  Raman suppression in a microstructure fiber with dual laser pumps , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[18]  P. Andrekson,et al.  Detailed characterization of afiber-optic parametric amplifier in phase-sensitive and phase-insensitive operation. , 2010, Optics express.

[19]  Zhi Tong,et al.  Phase-to-phase and phase-to-amplitude transfer characteristics of a nondegenerate-idler phase-sensitive amplifier. , 2011, Optics letters.

[20]  Guifang Li,et al.  Phase Regeneration of NRZ-DPSK Signals Based on Symmetric-Pump Phase-Sensitive Amplification , 2007, IEEE Photonics Technology Letters.

[21]  N. Wada,et al.  Investigation of an All-Optical Black-Box PPLN-PPLN BPSK Phase Regenerator , 2012, IEEE Photonics Technology Letters.

[22]  A. Zeilinger,et al.  Efficient quantum computing using coherent photon conversion , 2011, Nature.

[23]  T. Torounidis,et al.  Broadband Single-Pumped Fiber-Optic Parametric Amplifiers , 2007, IEEE Photonics Technology Letters.

[24]  Francesca Parmigiani,et al.  Phase sensitive amplification based on quadratic cascading in a periodically poled lithium niobate waveguide. , 2009, Optics express.

[25]  Bill Corcoran,et al.  Phase and amplitude characteristics of a phase-sensitive amplifier operating in gain saturation. , 2012, Optics express.