The importance of Π1 0 classes in effective randomness

We prove a number of results in effective randomness, using methods in which Π1 classes play an essential role. The results proved include the fact that every PA Turing degree is the join of two random Turing degrees, and the existence of a minimal pair of LR degrees below the LR degree of the halting problem.

[1]  Per Martin-Löf,et al.  The Definition of Random Sequences , 1966, Inf. Control..

[2]  Stephen G. Simpson,et al.  Mass Problems and Hyperarithmeticity , 2007, J. Math. Log..

[3]  Bjorn Kjos-Hanssen,et al.  Low for random reals and positive-measure domination , 2007, 1408.2171.

[4]  Sebastiaan A. Terwijn Computability and measure , 1998 .

[5]  John Stillwell,et al.  Decidability of the “almost all” theory of degrees , 1972, Journal of Symbolic Logic.

[6]  A. Nies Computability and randomness , 2009 .

[7]  Elvira Mayordomo,et al.  A Kolmogorov complexity characterization of constructive Hausdorff dimension , 2002, Inf. Process. Lett..

[8]  André Nies,et al.  Relativizing Chaitin's Halting Probability , 2005, J. Math. Log..

[9]  George Barmpalias,et al.  I classes, LR degrees and Turing degrees , 2008, Ann. Pure Appl. Log..

[10]  A. Nies Lowness properties and randomness , 2005 .

[11]  R. Soare Recursively enumerable sets and degrees , 1987 .

[12]  George Barmpalias,et al.  Random non-cupping revisited , 2006, J. Complex..

[13]  George Barmpalias Relative Randomness and Cardinality , 2010, Notre Dame J. Formal Log..

[14]  Julia A. Knight,et al.  Computable structures and the hyperarithmetical hierarchy , 2000 .

[15]  P. Odifreddi Classical recursion theory , 1989 .

[16]  Rodney G. Downey,et al.  Algorithmic Randomness and Complexity , 2010, Theory and Applications of Computability.

[17]  George Barmpalias,et al.  Working with the LR Degrees , 2007, TAMC.

[18]  Valentina Harizanov Computable Structures and the Hyperarithmetical Hierarchy . Studies in Logic and the Foundations of Mathematics , 2001 .

[19]  Jack H. Lutz,et al.  Effective Strong Dimension, Algorithmic Information, and Computational Complexity , 2002, ArXiv.

[20]  Antonín Kucera,et al.  An Alternative, Priority-Free, Solution to Post's Problem , 1996, MFCS.

[21]  G. Sacks Degrees of unsolvability , 1965 .

[22]  Douglas Cenzer ∏10 Classes in Computability Theory , 1999, Handbook of Computability Theory.

[23]  André Nies,et al.  Eliminating concepts , 2006 .

[24]  André Nies,et al.  Non-cupping and randomness , 2007 .

[25]  Antonín Kučera,et al.  On Relative Randomness , 1993, Ann. Pure Appl. Log..

[26]  Antonín Kucera,et al.  Low upper bounds of ideals , 2007, The Journal of Symbolic Logic.

[27]  Joseph S. Miller,et al.  The K-Degrees, Low for K Degrees, and Weakly Low for K Sets , 2009, Notre Dame J. Formal Log..

[28]  André Nies,et al.  Using random sets as oracles , 2007 .

[29]  George Barmpalias,et al.  Randomness, lowness and degrees , 2008, Journal of Symbolic Logic.

[30]  Stephen G. Simpson,et al.  Almost everywhere domination and superhighness , 2007, Math. Log. Q..