SmallWorlds: Visualizing Social Recommendations

We present SmallWorlds, a visual interactive graph‐based interface that allows users to specify, refine and build item‐preference profiles in a variety of domains. The interface facilitates expressions of taste through simple graph interactions and these preferences are used to compute personalized, fully transparent item recommendations for a target user. Predictions are based on a collaborative analysis of preference data from a user's direct peer group on a social network. We find that in addition to receiving transparent and accurate item recommendations, users also learn a wealth of information about the preferences of their peers through interaction with our visualization. Such information is not easily discoverable in traditional text based interfaces. A detailed analysis of our design choices for visual layout, interaction and prediction techniques is presented. Our evaluations discuss results from a user study in which SmallWorlds was deployed as an interactive recommender system on Facebook.

[1]  Sean M. McNee,et al.  Don't look stupid: avoiding pitfalls when recommending research papers , 2006, CSCW '06.

[2]  Kenneth Y. Goldberg,et al.  Eigentaste: A Constant Time Collaborative Filtering Algorithm , 2001, Information Retrieval.

[3]  John Riedl,et al.  Item-based collaborative filtering recommendation algorithms , 2001, WWW '01.

[4]  Robert Tobias,et al.  Interactive Manipulation of Large Graph Layouts , 2008 .

[5]  Martin Wattenberg,et al.  Visual exploration of multivariate graphs , 2006, CHI.

[6]  Tobias Höllerer,et al.  WiGis: A Framework for Scalable Web-Based Interactive Graph Visualizations , 2009, Graph Drawing.

[7]  Pearl Pu,et al.  A visual interface for critiquing-based recommender systems , 2008, EC '08.

[8]  Catherine Plaisant,et al.  TreePlus: Interactive Exploration of Networks with Enhanced Tree Layouts , 2006, IEEE Transactions on Visualization and Computer Graphics.

[9]  Prem Melville and Raymond J. Mooney and Ramadass Nagarajan Content-Boosted Collaborative Filtering , 2001 .

[10]  Martin Wattenberg,et al.  Your place or mine?: visualization as a community component , 2008, CHI.

[11]  Colin Ware,et al.  Information Visualization: Perception for Design , 2000 .

[12]  Edward M. Reingold,et al.  Graph drawing by force‐directed placement , 1991, Softw. Pract. Exp..

[13]  Kathy Schulz,et al.  Your Place or Mine? , 2001 .

[14]  Vladimir Batagelj,et al.  Pajek - Program for Large Network Analysis , 1999 .

[15]  Tim Dwyer,et al.  Scalable, Versatile and Simple Constrained Graph Layout , 2009, Comput. Graph. Forum.

[16]  Robin Burke,et al.  Identifying Attack Models for Secure Recommendation , 2004 .

[17]  John Riedl,et al.  GroupLens: an open architecture for collaborative filtering of netnews , 1994, CSCW '94.

[18]  John Riedl,et al.  Explaining collaborative filtering recommendations , 2000, CSCW '00.

[19]  Pattie Maes,et al.  Social information filtering: algorithms for automating “word of mouth” , 1995, CHI '95.

[20]  Sharon L. Milgram,et al.  The Small World Problem , 1967 .

[21]  Ben Shneiderman,et al.  The eyes have it: a task by data type taxonomy for information visualizations , 1996, Proceedings 1996 IEEE Symposium on Visual Languages.

[22]  Ben Y. Zhao,et al.  User interactions in social networks and their implications , 2009, EuroSys '09.

[23]  George Karypis,et al.  Evaluation of Item-Based Top-N Recommendation Algorithms , 2001, CIKM '01.

[24]  Derry O'Sullivan,et al.  Improving Case-Based Recommendation: A Collaborative Filtering Approach , 2002, ECCBR.

[25]  Raymond J. Mooney,et al.  Content-boosted collaborative filtering for improved recommendations , 2002, AAAI/IAAI.

[26]  Danah Boyd,et al.  Vizster: visualizing online social networks , 2005, IEEE Symposium on Information Visualization, 2005. INFOVIS 2005..

[27]  Bradley N. Miller,et al.  MovieLens unplugged: experiences with an occasionally connected recommender system , 2003, IUI '03.

[28]  Catherine Plaisant,et al.  NetLens: Iterative Exploration of Content-Actor Network Data , 2006, 2006 IEEE Symposium On Visual Analytics Science And Technology.

[29]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[30]  Harith Alani,et al.  Exploiting Synergy Between Ontologies and Recommender Systems , 2002, Semantic Web Workshop.

[31]  Barry Smyth,et al.  PeerChooser: visual interactive recommendation , 2008, CHI.