Structure and energetics of 180° domain walls in PbTiO3 by density functional theory

Density functional theory at the level of the local density approximation with the projector augmented wave method is used to determine the structure of 180° domain walls in tetragonal ferroelectric PbTiO(3). In agreement with previous studies, it is found that PbO-centered {100} walls have lower energies than TiO(2)-centered {100} walls, leading to a Peierls potential barrier for wall motion along <010> of ∼36 mJ m(-2). In addition to the Ising-like polarization along the tetragonal axis, it is found that near the domain wall, there is a small polarization in the wall-normal direction away from the domain wall. These Néel-like contributions to the domain wall are analyzed in terms of the Landau-Ginzburg-Devonshire phenomenological theory for ferroelectrics. Similar characteristics are found for {110} domain walls, where OO-centered walls are energetically more favorable than the PbTiO-centered walls.

[1]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[2]  Elisabeth Soergel,et al.  Visualization of ferroelectric domains in bulk single crystals , 2005 .

[3]  Daining Fang,et al.  Size-dependent ferroelectric behaviors of BaTiO3 nanowires , 2008 .

[4]  G. S. Ansell,et al.  Transmission electron microscopy of ferroelectric domain boundaries in barium titanate , 1969 .

[5]  S. Sinnott,et al.  Coupling of surface relaxation and polarization in PbTiO3 from atomistic simulation , 2008 .

[6]  Susanne Stemmer,et al.  Atomistic structure of 90° domain walls in ferroelectric PbTiO3 thin films , 1995 .

[7]  D. Vanderbilt,et al.  First-principles investigation of ferroelectricity in perovskite compounds. , 1994, Physical review. B, Condensed matter.

[8]  B. Jiang,et al.  Phenomenological theory of size effects in ultrafine ferroelectric particles of lead titanate , 1999 .

[9]  J. S. Liu,et al.  The effect of grain size on domain structure in unsupported thin films , 1996 .

[10]  Donghwa Lee,et al.  Mixed Bloch-Néel-Ising character of 180° ferroelectric domain walls , 2009 .

[11]  L. Qin,et al.  Studies of tetragonal PbTiO3 subjected to uniaxial stress along the c-axis , 2008 .

[12]  A. Yavari,et al.  Finite-temperature atomic structure of 180° ferroelectric domain walls in PbTiO3 , 2010, 1004.4652.

[13]  V. Gopalan,et al.  Structure and energetics of ferroelectric domain walls in LiNbO3 from atomic-level simulations , 2010 .

[14]  J. Hosson,et al.  Substrate influence on the shape of domains in epitaxial PbTiO3 thin films , 2007 .

[15]  T. Kitamura,et al.  Ab initio study of stress-induced domain switching in PbTiO3 , 2008 .

[16]  J. Dec,et al.  Ferroelectric domain structures of PbTiO3 studied by scanning force microscopy , 2000 .

[17]  A. Saxena,et al.  Phenomenological theory of a single domain wall in uniaxial trigonal ferroelectrics: Lithium niobate and lithium tantalate , 2005, cond-mat/0503312.

[18]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[19]  Sergei V. Kalinin,et al.  The influence of 180° ferroelectric domain wall width on the threshold field for wall motion , 2008 .

[20]  Leslie E. Cross,et al.  Thermodynamic theory of PbTiO3 , 1987 .

[21]  K. Bhattacharya,et al.  Investigation of twin-wall structure at the nanometre scale using atomic force microscopy , 2004, Nature materials.

[22]  M. Glinchuk,et al.  Ferroelectric thin film properties—Depolarization field and renormalization of a “bulk” free energy coefficients , 2003 .

[23]  S. K. Streiffer,et al.  Observation of nanoscale 180° stripe domains in ferroelectric PbTiO3 thin films , 2002 .

[24]  T. Kitamura,et al.  Ab initio density functional theory study of strain effects on ferroelectricity at PbTiO3 surfaces , 2006 .

[25]  Cao,et al.  Quasi-one-dimensional solutions for domain walls and their constraints in improper ferroelastics. , 1990, Physical review. B, Condensed matter.

[26]  S. Jiang,et al.  Theoretical model of 180° domain-wall structures and their transformation in ferroelectric perovskites , 1997 .

[27]  A. Tagantsev,et al.  Prediction of a low-temperature ferroelectric instability in antiphase domain boundaries of strontium titanate , 2001 .

[28]  P. Stadelmann,et al.  A comparison of HREM and Weak Beam Transmission Electron Microscopy for the quantitative measurement of the thickness of ferroelectric domain walls , 1998 .

[29]  William T. Lee,et al.  Influence of point defects on the distribution of twin wall widths , 2005 .

[30]  J. Hlinka,et al.  Phenomenological model of a 90° domain wall inBaTiO3-type ferroelectrics , 2006 .

[31]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[32]  D. Chadi,et al.  Ab initio study of 180° domain wall energy and structure in PbTiO3 , 1999 .

[33]  Lixin He,et al.  First-principles study of oxygen-vacancy pinning of domain walls in PbTiO 3 , 2003 .

[34]  S. R. Smith,et al.  Landau theory of the size-driven phase transition in ferroelectrics , 1995 .

[35]  A. Rappe,et al.  Development of a bond-valence molecular-dynamics model for complex oxides , 2005 .

[36]  T. Kitamura,et al.  Shell model potential for PbTiO3 and its applicability to surfaces and domain walls , 2008 .

[37]  G. Shirane,et al.  X-ray and neutron diffraction study of ferroelectric PbTiO2 , 1956 .

[38]  A. Rappe,et al.  Nucleation and growth mechanism of ferroelectric domain-wall motion , 2007, Nature.

[39]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[40]  Kurt Binder,et al.  Surface effects on phase transitions in ferroelectrics and dipolar magnets , 1979 .

[41]  Ronald E. Cohen,et al.  First-Principles Study of Piezoelectricity in PbTiO 3 , 1998 .

[42]  Umar Mohideen,et al.  Direct Observation of Pinning and Bowing of a Single Ferroelectric Domain Wall , 1999 .

[43]  D. Vanderbilt,et al.  Giant LO-TO splittings in perovskite ferroelectrics. , 1994, Physical review letters.

[44]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.