COUPLED EVOLUTION WITH TIDES OF THE RADIUS AND ORBIT OF TRANSITING GIANT PLANETS: GENERAL RESULTS

Some transiting extrasolar giant planets (EGPs) have measured radii larger than predicted by the standard theory. In this paper, we explore the possibility that an earlier episode of tidal heating can explain such radius anomalies and apply the formalism we develop to HD 209458b as an example. We find that for strong enough tides the planet's radius can undergo a transient phase of inflation that temporarily interrupts canonical, monotonic shrinking due to radiative losses. Importantly, an earlier episode of tidal heating can result in a planet with an inflated radius, even though its orbit has nearly circularized. Moreover, we confirm that at late times, and under some circumstances, by raising tides on the star itself a planet can spiral into its host. We note that a 3x to 10x solar planet atmospheric opacity with no tidal heating is sufficient to explain the observed radius of HD 209458b. However, our model demonstrates that with an earlier phase of episodic tidal heating, we can fit the observed radius of HD 209458b even with lower (solar) atmospheric opacities. This work demonstrates that, if a planet is left with an appreciable eccentricity after early inward migration and/or dynamical interaction, coupling radius and orbit evolutionmore » in a consistent fashion that includes tidal heating, stellar irradiation, and detailed model atmospheres might offer a generic solution to the inflated radius puzzle for transiting EGPs such as WASP-12b, TrES-4, and WASP-6b.« less

[1]  P. Cassen,et al.  Contribution of tidal dissipation to lunar thermal history. , 1978 .

[2]  Richard Greenberg,et al.  Tidal Evolution of Close-in Extrasolar Planets , 2008 .

[3]  S. Tremaine,et al.  Dynamical Origin of Extrasolar Planet Eccentricity Distribution , 2007, astro-ph/0703160.

[4]  P. H. Hauschildt,et al.  Evolutionary models for cool brown dwarfs and extrasolar giant planets. The case of HD 209458 , 2003 .

[5]  G. Chabrier,et al.  FALLING TRANSITING EXTRASOLAR GIANT PLANETS , 2009, 0901.2048.

[6]  M. Holman,et al.  THE TRANSIT LIGHT CURVE PROJECT. XI. SUBMILLIMAGNITUDE PHOTOMETRY OF TWO TRANSITS OF THE BLOATED PLANET WASP-4b , 2009, 0901.4346.

[7]  Mark S. Marley,et al.  Synthetic Spectra and Colors of Young Giant Planet Atmospheres: Effects of Initial Conditions and Atmospheric Metallicity , 2008, 0805.1066.

[8]  F. Allard,et al.  The effect of evaporation on the evolution of close-in giant planets , 2004, astro-ph/0404101.

[9]  Carnegie,et al.  HAT-P-1b: A Large-Radius, Low-Density Exoplanet Transiting One Member of a Stellar Binary* ** , 2007 .

[10]  I. Dobbs-Dixon,et al.  Atmospheric Dynamics of Short-Period Extrasolar Gas Giant Planets. I. Dependence of Nightside Temperature on Opacity , 2007, 0704.3269.

[11]  T. Guillot,et al.  Giant Planets at Small Orbital Distances , 1995, astro-ph/9511109.

[12]  Adam Burrows,et al.  Theoretical Radii of Extrasolar Giant Planets: The Cases of TrES-4, XO-3b, and HAT-P-1b , 2008, 0805.1733.

[13]  Avi Shporer,et al.  The Transit Light Curve Project. VII. The Not-So-Bloated Exoplanet HAT-P-1b , 2007, 0707.1908.

[14]  J. Williams,et al.  Lunar Laser Ranging: A Continuing Legacy of the Apollo Program , 1994, Science.

[15]  P. Bodenheimer,et al.  The Internal Structural Adjustment Due to Tidal Heating of Short-Period Inflated Giant Planets , 2004, astro-ph/0403083.

[16]  I. Hubeny,et al.  Possible Solutions to the Radius Anomalies of Transiting Giant Planets , 2006 .

[17]  D. Lin,et al.  Calculating the Tidal, Spin, and Dynamical Evolution of Extrasolar Planetary Systems , 2002 .

[18]  K. Menou,et al.  ATMOSPHERIC CIRCULATION OF HOT JUPITERS: A SHALLOW THREE-DIMENSIONAL MODEL , 2008, 0809.1671.

[19]  S. Peale,et al.  The tides of Io , 1981 .

[20]  A. Love A treatise on the mathematical theory of elasticity , 1892 .

[21]  C. Murray,et al.  Solar System Dynamics: Expansion of the Disturbing Function , 1999 .

[22]  Ignasi Ribas,et al.  A correlation between the heavy element content of transiting extrasolar planets and the metallicity of their parent stars , 2006, astro-ph/0605751.

[23]  Yanqin Wu,et al.  HOT JUPITERS IN BINARY STAR SYSTEMS , 2007 .

[24]  Yanqin Wu Origin of Tidal Dissipation in Jupiter. I. Properties of Inertial Modes , 2004, astro-ph/0407627.

[25]  M. Marley,et al.  On the Luminosity of Young Jupiters , 2006, astro-ph/0609739.

[26]  Peter R. McCullough,et al.  XO-3b: A Massive Planet in an Eccentric Orbit Transiting an F5 V Star , 2007, 0712.4283.

[27]  ON THE SURVIVAL OF SHORT-PERIOD TERRESTRIAL PLANETS , 2004, astro-ph/0406677.

[28]  Tristan Guillot,et al.  Evolution of "51 Pegasus b-like" planets , 2002 .

[29]  W. Benz,et al.  Birth and fate of hot-Neptune planets , 2005, astro-ph/0512091.

[30]  R. Davies,et al.  Astronomical Society of the Pacific Conference Series , 2010 .

[31]  A. Burrows,et al.  THEORETICAL RADII OF TRANSITING GIANT PLANETS: THE CASE OF OGLE-TR-56b , 2004, astro-ph/0405264.

[32]  D. Fabrycky,et al.  Cassini States with Dissipation: Why Obliquity Tides Cannot Inflate Hot Jupiters , 2007, astro-ph/0703418.

[33]  M. Holman,et al.  Accepted for publication in the Astrophysical Journal Letters Obliquity Tides on Hot Jupiters , 2005 .

[34]  Steven Soter,et al.  Q in the solar system , 1966 .

[35]  W. M. Kaula,et al.  An introduction to planetary physics : the terrestrial planets , 1968 .

[36]  T. Guillot,et al.  A Nongray Theory of Extrasolar Giant Planets and Brown Dwarfs , 1997, astro-ph/9705201.

[37]  M. Marley,et al.  Atmospheric Circulation of Hot Jupiters: Three-dimensional Circulation Models of HD 209458b and HD 189733b with Simplified Forcing , 2008, 0802.0327.

[38]  R. Mardling,et al.  Long-term tidal evolution of short-period planets with companions , 2007, 0706.0224.

[39]  A. Burrows,et al.  An expanded set of brown dwarf and very low mass star models , 1993 .

[40]  N. Murray,et al.  Planet Migration and Binary Companions: The Case of HD 80606b , 2003, astro-ph/0303010.

[41]  A. Collier Cameron,et al.  Discovery and characterization of WASP-6b, an inflated sub-Jupiter mass planet transiting a solar-type star , 2009, 0901.4705.

[42]  William B. Hubbard,et al.  A Theory for the Radius of the Transiting Giant Planet HD 209458b , 2003, astro-ph/0305277.

[43]  Marley,et al.  On the Radii of Close-in Giant Planets , 2000, The Astrophysical journal.

[44]  Richard Greenberg,et al.  Tidal Heating of Extrasolar Planets , 2008, 0803.0026.

[45]  Richard Greenberg,et al.  THE HD 40307 PLANETARY SYSTEM: SUPER-EARTHS OR MINI-NEPTUNES? , 2009, 0901.1698.

[46]  J. Goodman THERMODYNAMICS OF ATMOSPHERIC CIRCULATION ON HOT JUPITERS , 2008, 0810.1282.

[47]  D. N. C. Lin,et al.  Tidal Dissipation in Rotating Giant Planets , 2004 .

[48]  Tristan Guillot,et al.  Atmospheric circulation and tides of ``51 Pegasus b-like'' planets , 2002 .

[49]  G. Laughlin,et al.  Hydrodynamic Simulations of Unevenly Irradiated Jovian Planets , 2007, 0711.2106.

[50]  Debra A. Fischer,et al.  A Comparison of Observationally Determined Radii with Theoretical Radius Predictions for Short-Period Transiting Extrasolar Planets , 2005 .

[51]  Peter Bodenheimer,et al.  The Effect of Tidal Inflation Instability on the Mass and Dynamical Evolution of Extrasolar Planets with Ultrashort Periods , 2003, astro-ph/0303362.

[52]  M. Nagasawa,et al.  Formation of Hot Planets by a Combination of Planet Scattering, Tidal Circularization, and the Kozai Mechanism , 2008, 0801.1368.

[53]  D. C. Heggie,et al.  Celestial Mechanics and Dynamical Astronomy , 2004 .

[54]  David Charbonneau,et al.  TrES-4: A Transiting Hot Jupiter of Very Low Density , 2007, 0708.0834.

[55]  F. Allard,et al.  The Evolution of Irradiated Planets: Application to Transits , 2004, astro-ph/0401487.

[56]  M. E. Everett,et al.  A NEW SPECTROSCOPIC AND PHOTOMETRIC ANALYSIS OF THE TRANSITING PLANET SYSTEMS TrES-3 AND TrES-4 , 2008, 0809.4589.

[57]  G. Laughlin,et al.  On the Radii of Extrasolar Giant Planets , 2003 .

[58]  Peter Bodenheimer,et al.  On the Tidal Inflation of Short-Period Extrasolar Planets , 2001 .

[59]  S. Gavrilov,et al.  Love numbers of the giant planets , 1977 .

[60]  R. Kurucz Solar abundance model atmospheres for 0,1,2,4,8 km/s. , 1994 .

[61]  J. Fortney,et al.  Effects of helium phase separation on the evolution of extrasolar giant planets , 2003, astro-ph/0402620.

[62]  Eccentricity Evolution for Planets in Gaseous Disks , 2002, astro-ph/0202462.

[63]  David Charbonneau,et al.  Using Stellar Limb-Darkening to Refine the Properties of HD 209458b , 2006, astro-ph/0603542.

[64]  Tidal heating of terrestrial extrasolar planets and implications for their habitability , 2008, 0808.2770.

[65]  Peter P. Eggleton,et al.  The Equilibrium Tide Model for Tidal Friction , 1998, astro-ph/9801246.

[66]  I. Baraffe,et al.  Structure and evolution of super-Earth to super-Jupiter exoplanets - I. Heavy element enrichment in the interior , 2008, 0802.1810.

[67]  Gilles Chabrier,et al.  Heat transport in giant (exo)planets: a new perspective , 2007 .

[68]  M. Holman,et al.  Accepted for publication in The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 10/09/06 IMPROVED PARAMETERS FOR EXTRASOLAR TRANSITING PLANETS , 2008 .

[69]  Ivan Hubeny,et al.  Non-LTE line-blanketed model atmospheres of hot stars. 1: Hybrid complete linearization/accelerated lambda iteration method , 1995 .

[70]  T. Brown,et al.  Detection of Planetary Transits Across a Sun-like Star , 1999, The Astrophysical journal.

[71]  C. Lackner,et al.  DYNAMICAL TIDES IN ROTATING PLANETS AND STARS , 2008, 0812.1028.

[72]  P. H. Hauschildt,et al.  Hot-Jupiters and hot-Neptunes: A common origin? , 2005 .

[73]  Yanqin Wu Origin of Tidal Dissipation in Jupiter. II. The Value of Q , 2004, astro-ph/0407628.

[74]  Eric B. Ford,et al.  Dynamical Outcomes of Planet-Planet Scattering , 2007, astro-ph/0703166.

[75]  Tidal decay of close planetary orbits , 1996, astro-ph/9605059.

[76]  D. Lin,et al.  Spin-Orbit Evolution of Short-Period Planets , 2004, astro-ph/0408191.

[77]  J. Laskar,et al.  Tidal dissipation within hot Jupiters : a new appraisal , 2006, astro-ph/0612044.

[78]  T. Gold,et al.  On the Eccentricity of Satellite Orbits in the Solar System , 1963 .

[79]  Gilles Chabrier,et al.  An Equation of State for Low-Mass Stars and Giant Planets , 1995 .

[80]  S. Seager,et al.  Atmospheric Circulation of Close-In Extrasolar Giant Planets. I. Global, Barotropic, Adiabatic Simulations , 2006, astro-ph/0607338.

[81]  David Charbonneau,et al.  ATMOSPHERIC CIRCULATION OF HOT JUPITERS: COUPLED RADIATIVE-DYNAMICAL GENERAL CIRCULATION MODEL SIMULATIONS OF HD 189733b and HD 209458b , 2008, 0809.2089.

[82]  J. Winn,et al.  EMPIRICAL CONSTRAINTS ON TROJAN COMPANIONS AND ORBITAL ECCENTRICITIES IN 25 TRANSITING EXOPLANETARY SYSTEMS , 2008, 0811.1996.

[83]  R. Paul Butler,et al.  Measurement of the Spin-Orbit Angle of Exoplanet HAT-P-1b , 2008, 0806.1734.

[84]  D. Lin,et al.  TIDAL DISSIPATION IN ROTATING SOLAR-TYPE STARS , 2007 .

[85]  Mark S. Marley,et al.  Planetary Radii across Five Orders of Magnitude in Mass and Stellar Insolation: Application to Transits , 2006 .

[86]  R. G. West,et al.  WASP-12b: THE HOTTEST TRANSITING EXTRASOLAR PLANET YET DISCOVERED , 2008, 0812.3240.

[87]  L. Hebb,et al.  Improved parameters for the transiting hot Jupiters WASP-4b and WASP-5b , 2008, 0812.1998.

[88]  G. Darwin On the Secular Changes in the Elements of the Orbit of a Satellite Revolving About a Planet Distorted by Tides , 1880, Nature.

[89]  Origins of Eccentric Extrasolar Planets: Testing the Planet-Planet Scattering Model , 2007, astro-ph/0703163.