Thermodynamics applied to reverse cycle machines, a review

A review of reverse cycle machines thermodynamics is proposed. It is shown how starting from equilibrium thermodynamics at the beginning, a new appraisal was proposed since 1980, and developed until now. Particular emphasis is put on vapour compression reverse machines (mainly refrigerating machines and heat pumps), but also on three or quadrithermal configurations, that appear as the most promising alternative to vapour compression machines today. However other machines alternatives are considered shortly. The main features of this review are: the usefulness of thermodynamics to develop more significant upperbounds for various optimization criterions concerning reverse cycle machines and their possible interrelation. The importance of irreversibilities in characterization of reverse cycle machines is enlighten too. Complementary studies are proposed in the field of exergoeconomy and environmental concern.

[1]  Michel Feidt,et al.  Study of the improvement in the performance coefficient of machines operating with three reservoirs , 2004 .

[2]  Lingen Chen,et al.  General performance characteristics of a finite-speed Carnot refrigerator , 1996 .

[3]  Jincan Chen,et al.  OPTIMAL CHOICE OF THE PERFORMANCE PARAMETERS OF AN ABSORPTION HEAT TRANSFORMER , 1995 .

[4]  Syed M. Zubair,et al.  Design and performance evaluation of reciprocating refrigeration systems , 1999 .

[5]  N. E. Wijeysundera Performance of three-heat-reservoir absorption cycles with external and internal irreversibilities , 1997 .

[6]  S. Klein,et al.  An improved extended corresponding states method for estimation of viscosity of pure refrigerants and mixtures , 1997 .

[7]  A. Coronas,et al.  Cooling loads analysis of an endoreversible solar absorption refrigerator cycle , 2006 .

[8]  Andrew H. Chen,et al.  Regulations, lender identity and bank loan pricing , 1996 .

[9]  C. Monteil,et al.  Techniques de l'Ingénieur , 1961 .

[10]  Jeffrey M. Gordon,et al.  Cool thermodynamics : The engineering and physics of predictive, diagnostic and optimization methods for cooling systems , 2000 .

[11]  Yan,et al.  Unified description of endoreversible cycles. , 1989, Physical review. A, General physics.

[12]  Lingen Chen,et al.  The Optimal Performance of a Carnot Heat Pump under the Condition of Mixed Heat Resistance , 2002, Open Syst. Inf. Dyn..

[13]  L. Grosu Contribution à l'optimisation thermodynamique et économique des machines à cycle inversé à deux et trois réservoirs de chaleur , 2000 .

[14]  N. E. Wijeysundera Analysis of the ideal absorption cycle with external heat-transfer irreversibilities , 1995 .

[15]  Fengrui Sun,et al.  Optimization of the specific rate of refrigeration in combined refrigeration cycles , 1995 .

[16]  Fengrui Sun,et al.  The influence of heat resistance and heat leak on the performance of a four-heat-reservoir absorption refrigerator with heat transfer law of Q∝Δ(T−1) , 2004 .

[17]  Lingen Chen,et al.  Optimization of solar absorption refrigerator , 1997 .

[19]  Yasin Ust,et al.  Performance optimization of irreversible refrigerators based on a new thermo-ecological criterion , 2007 .

[20]  Fengrui Sun,et al.  Effect of heat transfer law on the finite-time exergoeconomic performance of a Carnot refrigerator , 2001 .

[21]  M. Feidt Depletion of ozone and the greenhouse effect: A new goal for the design of inverse cycle machines , 2002 .

[22]  Chih Wu,et al.  Performance of a solar-engine-driven-air-conditioning system , 1993 .

[23]  Cyril Toublanc,et al.  Analysis of a novel refrigeration Carnot-type cycle based on isothermal vapour compression , 2008 .

[24]  Fengrui Sun,et al.  Optimal coefficient of performance and heating load relationship of a three-heat-reservoir endoreversible heat pump , 1997 .

[25]  K. Abrahamsson,et al.  On the efficiencies of absorption heat transformers , 1992 .

[26]  Jincan Chen,et al.  A class of irreversible Carnot refrigeration cycles with a general heat transfer law , 1990 .

[27]  Yanming Kang,et al.  Performance optimization for an irreversible four-temperature-level absorption heat pump , 2008 .

[28]  C. H. Blanchard,et al.  Coefficient of performance for finite speed heat pump , 1980 .

[29]  Sanford Klein Design Considerations for Refrigeration Cycles , 1992 .

[30]  Lingen Chen,et al.  Performance analysis of solar three-heat-reservoir cooling systems , 1996 .

[31]  Lingen Chen,et al.  Effect ZOF heat transfer law on finite-time exergoeconomic performance of Carnot heat pump , 1998 .

[32]  Bjarne Andresen,et al.  Optimal analysis of primary performance parameters for an endoreversible absorption heat pump , 1995 .

[33]  Jincan Chen,et al.  The maximum overall coefficient of performance of a solar‐driven heat pump system , 1994 .

[34]  Chih Wu,et al.  Optimal performance of a geothermal heat-engine-driven heat-pump system , 1994 .

[35]  I. I. Novikov The efficiency of atomic power stations (a review) , 1958 .

[36]  Fengrui Sun,et al.  Finite-time thermodynamic performance of an isentropic closed regenerated Brayton refrigeration cycle , 1997 .

[37]  Maurizio Sasso,et al.  Determining the optimal configuration of a heat exchanger (with a two-phase refrigerant) using exergoeconomics , 2002 .

[38]  P. Chambadal Les centrales nucléaires , 1957 .

[39]  S. C. Kaushik,et al.  General performance characteristics of an irreversible vapour absorption refrigeration system using finite time thermodynamic approach , 2005 .

[40]  Jeffrey M. Gordon,et al.  Thermodynamic modeling of reciprocating chillers , 1994 .

[41]  Ricardo Nicolau Nassar Koury,et al.  Numerical simulation of a variable speed refrigeration system , 2001 .

[42]  D. C. Agrawal,et al.  Finite‐time Carnot refrigerators with wall gain and product loads , 1993 .

[43]  Chih Wu,et al.  Specific heating load of an endoreversible Carnot heat Pump , 1993 .

[44]  Lingai Luo,et al.  Thermodynamics of Adsorption Cycles: A Theoretical Study , 1992 .

[45]  Rita Mastrullo,et al.  Exergetic analysis of compound mechanical refrigeration systems , 1987 .

[46]  H. Auracher Fundamental aspects of exergy application to the analysis and optimization of energy processes , 1984 .

[47]  K. Ng,et al.  Predictive and diagnostic aspects of a universal thermodynamic model for chillers , 1995 .

[48]  Jan Szargut Component efficiencies of a vapour-compression heat pump , 2002 .

[49]  N. E. Wijeysundera Performance limits of absorption cycles with external heat-transfer irreversibilities , 1996 .

[50]  Lixuan Chen,et al.  The effect of heat‐transfer law on performance of a two‐heat‐source endoreversible cycle , 1989 .

[51]  Sergio Sibilio,et al.  Recent Advances in Finite-Time Thermodynamics , 1999 .

[52]  Lingen Chen,et al.  A generalized model of a real refrigerator and its performance , 1997 .

[53]  Chih Wu,et al.  Optimization of the rate of exergy output of a multi-stage endoreversible combined refrigeration system , 2001 .

[54]  F. Sun,et al.  The influence of heat-transfer law on the endo-reversible Carnot refrigerator , 1996 .

[55]  Vasile Minea,et al.  Hybrid absorption heat pump with ammonia/water mixture – Some design guidelines and district heating application , 2006 .

[56]  Cha'o-Kuang Chen,et al.  Exergy destruction minimization of an irreversible Carnot refrigeration cycle , 2007 .

[57]  Carnot comparison of multi-temperature level absorption heat cycles , 1993 .

[58]  Lingen Chen,et al.  Optimisation of steady flow refrigeration cycles , 1996 .

[59]  Jeffrey M. Gordon,et al.  A general thermodynamic model for absorption chillers: Theory and experiment , 1995 .

[60]  Selahattin Göktun Solar powered cogeneration system for air conditioning and refrigeration , 1999 .

[61]  Mehmet Kanoglu,et al.  Exergy analysis of vapor compression refrigeration systems , 2002 .

[62]  Fengrui Sun,et al.  Heat transfer effect on the specific cooling load of refrigerators , 1996 .

[63]  A. Bejan,et al.  Optimal allocation of a heat-exchanger inventory in heat driven refrigerators , 1995 .

[64]  Hans-Martin Dr Ing Hellmann Carnot-COP for sorption heat pumps working between four temperature levels , 2002 .

[65]  A. Bejan,et al.  Entropy Generation Through Heat and Fluid Flow , 1983 .

[66]  Lingen Chen,et al.  Performance of an endoreversible four-heat-reservoir absorption heat pump with a generalized heat transfer law , 2006 .

[67]  D. C. Agrawal,et al.  Performance of a Carnot refrigerator at maximum cooling power , 1990 .

[68]  Chih Wu,et al.  Cooling capacity optimization of a geothermal absorption refrigeration cycle , 1992 .

[69]  Fengrui Sun,et al.  Optimal performance of an irreversible absorption refrigerator , 2002 .

[70]  B. Agnew,et al.  Thermodynamic analysis of combined diesel engine and absorption unit : Turbocharged engine , 1996 .

[71]  Fengrui Sun,et al.  Optimal performance of an endoreversible Carnot heat pump , 1997 .

[72]  K. Ng,et al.  On the modeling of absorption chillers with external and internal irreversibilities , 1997 .

[73]  F. Curzon,et al.  Efficiency of a Carnot engine at maximum power output , 1975 .

[74]  Jeffrey M. Gordon,et al.  Optimizing chiller operation based on finite-time thermodynamics: universal modeling and experimental confirmation , 1997 .

[75]  C-K Chen,et al.  Exergetic efficiency optimization of a refrigeration system with multi-irreversibilities , 2006 .

[76]  D. Leducq,et al.  Non-linear predictive control of a vapour compression cycle , 2006 .

[77]  Jincan Chen,et al.  An optimal endoreversible three‐heat‐source refrigerator , 1989 .

[78]  Adrian Bejan,et al.  Power and Refrigeration Plants for Minimum Heat Exchanger Inventory , 1993 .

[79]  S. C. Kaushik,et al.  Finite time optimization of an endoreversible and irreversible vapour absorption refrigeration system , 2003 .

[80]  Fengrui Sun,et al.  Optimal configuration of a class of two-heat-reservoir refrigeration cycles , 1998 .

[81]  F. Sun,et al.  Model of real absorption heat pump cycle with a generalized heat transfer law and its performance , 2007 .

[82]  Lingen Chen,et al.  Performance of real absorption heat-transformer with a generalized heat transfer law , 2008 .

[83]  Lingen Chen,et al.  Performance optimization of an irreversible four-heat-reservoir absorption refrigerator , 2003 .

[84]  Antonio F. Miguel,et al.  Utilisation of air-groundwater exergy potential for improvement of the performance of heat pump systems , 2006 .

[85]  Fengrui Sun,et al.  Optimization of steady flow heat pumps , 1998 .

[86]  Fengrui Sun,et al.  Heat transfer effect on the specific heating load of heat pumps , 1997 .

[87]  A. Bellagi,et al.  Realistic limitations to the operation of heat-driven refrigerators , 2007 .

[88]  Adrian Bejan,et al.  Theory of heat transfer-irreversible refrigeration plants , 1989 .

[89]  Thomas H. Kuehn,et al.  Irreversibility analysis of a water-to-water mechanical-compression heat pump , 1988 .

[90]  Chin Wu,et al.  Cooling capacity optimization of a waste heat absorption refrigeration cycle , 1993 .

[91]  K. Ng,et al.  Entropy production analysis and experimental confirmation of absorption systems , 1997 .

[92]  M. Feidt,et al.  Conditions optimales de fonctionnement des pompes à chaleur ou machines à froid associées à un cycle de Carnot endoréversible , 1986 .

[93]  Jincan Chen,et al.  Equivalent combined systems of three‐heat‐source heat pumps , 1989 .

[94]  Lingen Chen,et al.  Optimal performance coefficient and cooling load relationship of a three-heat-reservoir endoreversible refrigerator , 1997 .

[95]  Jeffrey M. Gordon,et al.  Experimental study of the fundamental properties of reciprocating chillers and their relation to thermodynamic modeling and chiller design , 1996 .

[96]  K. Ng,et al.  Thermodynamic analysis of absorption chillers: internal dissipation and process average temperature , 1998 .

[97]  Jeffrey M. Gordon,et al.  How varying condenser coolant flow rate affects chiller performance: thermodynamic modeling and experimental confirmation , 2000 .

[98]  Heat pump performance with internal heat leak , 1997 .

[99]  Robert Tozer,et al.  Heat powered refrigeration cycles , 1998 .

[100]  Pradeep Bansal,et al.  An elemental NTU-ε model for vapour-compression liquid chillers , 2001 .

[101]  Chih Wu,et al.  The Influence of Several Major Irreversibilities on the Performance Characteristics of an n-Stage Combined Heat Pump System , 1999 .

[102]  M. Feidt Advanced Thermodynamics of Reverse Cycle Machine , 2003 .

[103]  Chih Wu Maximum cooling load of a heat-engine-driven refrigerator , 1993 .

[104]  Lawrence S. Chen 98/00669 Influence of internal heat leak on the performance of refrigerators , 1998 .

[105]  Giuseppe Grazzini,et al.  Irreversible refrigerators with isothermal heat exchanges , 1993 .