Expression of alpha 1-proteinase inhibitor in Escherichia coli: effects of single amino acid substitutions in the active site loop on aggregate formation.

[1]  D. Lomas,et al.  The mechanism of Z α1-antitrypsin accumulation in the liver , 1993, Nature.

[2]  J. King,et al.  Folding and assembly of oligomeric proteins in Escherichia coli. , 1992, Current opinion in biotechnology.

[3]  R. Huber,et al.  Evidence for the extent of insertion of the active site loop of intact alpha 1 proteinase inhibitor in beta-sheet A. , 1992, Biochemistry.

[4]  J. Enghild,et al.  Conformation of the reactive site loop of alpha 1-proteinase inhibitor probed by limited proteolysis. , 1992, Biochemistry.

[5]  R. Pain,et al.  Effects of glycosylation on the folding and stability of human, recombinant and cleaved alpha 1-antitrypsin. , 1992, Journal of molecular biology.

[6]  P. Blum,et al.  DnaK-Mediated Alterations in Human Growth Hormone Protein Inclusion Bodies , 1992, Bio/Technology.

[7]  J. Sambrook,et al.  Protein folding in the cell , 1992, Nature.

[8]  R. Huber,et al.  Inhibitory activity and conformational transition of alpha 1-proteinase inhibitor variants. , 1991, European journal of biochemistry.

[9]  C. Schein,et al.  Optimizing protein folding to the native state in bacteria. , 1991, Current opinion in biotechnology.

[10]  Johannes Buchner,et al.  Protein Aggregation in vitro and in vivo: A Quantitative Model of the Kinetic Competition between Folding and Aggregation , 1991, Bio/Technology.

[11]  L. J. Perry,et al.  Mutations in Human Interferon Gamma Affecting Inclusion Body Formation Identified by a General Immunochemical Screen , 1991, Bio/Technology.

[12]  B Fane,et al.  Global suppression of protein folding defects and inclusion body formation. , 1991, Science.

[13]  R. Bischoff,et al.  Purification and biochemical characterization of recombinant alpha 1-antitrypsin variants expressed in Escherichia coli. , 1991, Biochemistry.

[14]  R. Bischoff,et al.  Application of electrospray mass spectrometry to the characterization of recombinant proteins up to 44 kDa. , 1990, Biomedical & environmental mass spectrometry.

[15]  R. Huber,et al.  Structural transition of α1‐antitrypsin by a peptide sequentially similar to β‐strand s4A , 1990 .

[16]  A. Leslie,et al.  Crystal structure of ovalbumin as a model for the reactive centre of serpins , 1990, Nature.

[17]  R. Huber,et al.  Crystal structure of plakalbumin, a proteolytically nicked form of ovalbumin. Its relationship to the structure of cleaved alpha-1-proteinase inhibitor. , 1990, Journal of molecular biology.

[18]  R. Carrell,et al.  Implications of the three-dimensional structure of alpha 1-antitrypsin for structure and function of serpins. , 1989, Biochemistry.

[19]  J. King,et al.  Protein Folding Intermediates and Inclusion Body Formation. , 1989, Bio/Technology.

[20]  V. Weiss,et al.  Plasma serine proteinase inhibitors (serpins) exhibit major conformational changes and a large increase in conformational stability upon cleavage at their reactive sites. , 1988, The Journal of biological chemistry.

[21]  J. Kane,et al.  Formation of recombinant protein inclusion bodies in Escherichia coli , 1988 .

[22]  J. King,et al.  Formation of aggregates from a thermolabile in vivo folding intermediate in P22 tailspike maturation. A model for inclusion body formation. , 1988, The Journal of biological chemistry.

[23]  C. Schein,et al.  Formation of Soluble Recombinant Proteins in Escherichia Coli is Favored by Lower Growth Temperature , 1988, Bio/Technology.

[24]  R. Crystal,et al.  RNA structural elements for expression in Escherichia coli , 1986, FEBS letters.

[25]  R. Crystal,et al.  Altered specificities of genetically engineered α1 antitrypsin variants , 1986 .

[26]  F. Marston,et al.  Examination of calf prochymosin accumulation in Escherichia coli: disulphide linkages are a structural component of prochymosin‐containing inclusion bodies. , 1985, The EMBO journal.

[27]  R. Schoner,et al.  Isolation and Purification of Protein Granules from Escherichia coli Cells Overproducing Bovine Growth Hormone , 1985, Bio/Technology.

[28]  R. Crystal,et al.  Synthesis in E. coli of α1-antitrypsin variants of therapeutic potential for emphysema and thrombosis , 1985, Nature.

[29]  R. Huber,et al.  Human alpha 1-proteinase inhibitor. Crystal structure analysis of two crystal modifications, molecular model and preliminary analysis of the implications for function. , 1984, Journal of molecular biology.

[30]  R. Lathe,et al.  High-level production of biologically active human alpha 1-antitrypsin in Escherichia coli. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[31]  W. Fiers,et al.  Plasmid vectors for high-efficiency expression controlled by the PL promoter of coliphage lambda. , 1981, Gene.

[32]  M. M. Bradford A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. , 1976, Analytical biochemistry.

[33]  U. K. Laemmli,et al.  Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4 , 1970, Nature.

[34]  George Georgiou,et al.  Structure and Morphology of Protein Inclusion Bodies in Escherichia Coli , 1991, Bio/Technology.

[35]  G. Salvesen,et al.  Human plasma proteinase inhibitors. , 1983, Annual review of biochemistry.

[36]  P. Davies Plasma Proteinase Inhibitors , 1976 .

[37]  C. Laurell,et al.  The Electrophoretic α;1-Globulin Pattern of Serum in α;1-Antitrypsin Deficiency , 1963 .