A Survey of Componentwise Perturbation Theory
暂无分享,去创建一个
[1] C. T. Fike,et al. Norms and exclusion theorems , 1960 .
[2] J. H. Wilkinson. Error analysis of floating-point computation , 1960 .
[3] W. Prager,et al. Compatibility of approximate solution of linear equations with given error bounds for coefficients and right-hand sides , 1964 .
[4] J. H. Wilkinson. The algebraic eigenvalue problem , 1966 .
[5] J. H. Wilkinson,et al. Admissible Solutions of Linear Systems with Not Sharply Defined Coefficients , 1965 .
[6] W. Kahan. Accurate eigenvalues of a symmetric tri-diagonal matrix , 1966 .
[7] J. H. Wilkinson,et al. Note on the iterative refinement of least squares solution , 1966 .
[8] J. L. Rigal,et al. On the Compatibility of a Given Solution With the Data of a Linear System , 1967, JACM.
[9] P. Businger. Matrices which can be optimally scaled , 1968 .
[10] A. Sluis. Condition numbers and equilibration of matrices , 1969 .
[11] W. Kahan,et al. The Rotation of Eigenvectors by a Perturbation. III , 1970 .
[12] G. Stewart. Error and Perturbation Bounds for Subspaces Associated with Certain Eigenvalue Problems , 1973 .
[13] P. Wedin. Perturbation theory for pseudo-inverses , 1973 .
[14] Z. Kovarik. Compatibility of approximate solutions of inaccurate linear equations , 1976 .
[15] Donald B. Rubin,et al. The Acceptability of Regression Solutions: Another Look at Computational Accuracy , 1976 .
[16] G. Stewart. Perturbation Bounds for the $QR$ Factorization of a Matrix , 1977 .
[17] Robert D. Skeel,et al. Scaling for Numerical Stability in Gaussian Elimination , 1979, JACM.
[18] R. Skeel. Iterative refinement implies numerical stability for Gaussian elimination , 1980 .
[19] B. Parlett. The Symmetric Eigenvalue Problem , 1981 .
[20] A. J. Geurts,et al. A contribution to the theory of condition , 1982 .
[21] Optimally scaled matrices, necessary and sufficient conditions , 1982 .
[22] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[23] J. Barlow,et al. Computing accurate eigensystems of scaled diagonally dominant matrices: LAPACK working note No. 7 , 1988 .
[24] Nicholas J. Higham,et al. FORTRAN codes for estimating the one-norm of a real or complex matrix, with applications to condition estimation , 1988, TOMS.
[25] Nicholas J. Higham,et al. The accuracy of solutions to triangular systems , 1989 .
[26] J. Demmel,et al. The strong stability of algorithms for solving symmetric linear systems , 1989 .
[27] J. Demmel,et al. The bidiagonal singular value decomposition and Hamiltonian mechanics: LAPACK working note No. 11 , 1989 .
[28] I. Duff,et al. On the augmented system approach to sparse least-squares problems , 1989 .
[29] J. Demmel,et al. On Floating Point Errors in Cholesky , 1989 .
[30] A. S. Deif. Realistic a Priori and a Posteriori Error Bounds for Computed Eigenvalues , 1990 .
[31] G. Stewart,et al. Matrix Perturbation Theory , 1990 .
[32] G. W. Stewart,et al. Stochastic Perturbation Theory , 1990, SIAM Rev..
[33] James Demmel,et al. Accurate Singular Values of Bidiagonal Matrices , 1990, SIAM J. Sci. Comput..
[34] A. Barrlund. Perturbation bounds for theLDLH andLU decompositions , 1991 .
[35] Ji-guang Sun. Perturbation bounds for the Cholesky andQR factorizations , 1991 .
[36] N. Higham. Iterative refinement enhances the stability ofQR factorization methods for solving linear equations , 1991 .
[37] Charles R. Johnson,et al. Topics in Matrix Analysis , 1991 .
[38] Å. Björck. Component-wise perturbation analysis and error bounds for linear least squares solutions , 1991 .
[39] W. Gragg,et al. On computing accurate singular values and eigenvalues of matrices with acyclic graphs , 1992 .
[40] Sven G. Bartels,et al. The structured sensitivity of Vandermonde-like systems , 1992 .
[41] Nicholas J. Higham,et al. Backward Error and Condition of Structured Linear Systems , 1992, SIAM J. Matrix Anal. Appl..
[42] James Demmel,et al. Jacobi's Method is More Accurate than QR , 1989, SIAM J. Matrix Anal. Appl..
[43] N. Higham,et al. Stability of methods for matrix inversion , 1992 .
[44] James Demmel,et al. The Componentwise Distance to the Nearest Singular Matrix , 1992, SIAM J. Matrix Anal. Appl..
[45] Svatopluk Poljak,et al. Checking robust nonsingularity is NP-hard , 1993, Math. Control. Signals Syst..
[46] H. Zha. A componentwise perturbation analysis of the QR decomposition , 1993 .
[47] J. Demmel,et al. Improved Error Bounds for Underdetermined System Solvers , 1993, SIAM J. Matrix Anal. Appl..
[48] Israel Koltracht,et al. Mixed componentwise and structured condition numbers , 1993 .
[49] G. Stewart. On the perturbation of LU, Cholesky, and QR factorizations , 1993 .
[50] Ivan Slapničar,et al. Floating-point perturbations of Hermitian matrices , 1993 .
[51] N. Higham,et al. COMPONENTWISE ERROR ANALYSIS FOR STATIONARY ITERATIVE METHODS , 1993 .
[52] Israel Koltracht,et al. On accurate computations of the Perron root , 1993 .
[53] C. O'Cinneide. Entrywise perturbation theory and error analysis for Markov chains , 1993 .
[54] Ilse C. F. Ipsen,et al. On Rank-Revealing Factorisations , 1994, SIAM J. Matrix Anal. Appl..
[55] B. Parlett,et al. Accurate singular values and differential qd algorithms , 1994 .
[56] Ilse C. F. Ipsen,et al. Uniform Stability of Markov Chains , 1994, SIAM J. Matrix Anal. Appl..
[57] B. Parlett,et al. Accurate singular values and differential qd algorithms , 1994 .
[58] Ilse C. F. Ipsen,et al. Relative perturbation techniques for singular value problems , 1995 .
[59] Ji-Guang Sun,et al. Optimal backward perturbation bounds for the linear least squares problem , 1995, Numer. Linear Algebra Appl..
[60] Desmond J. Higham,et al. Condition numbers and their condition numbers , 1995 .