On the End-Vertex Problem of Graph Searches

End vertices of graph searches can exhibit strong structural properties and are crucial for many graph algorithms. The problem of deciding whether a given vertex of a graph is an end-vertex of a particular search was first introduced by Corneil, K\"ohler and Lanlignel in 2010. There they showed that this problem is in fact NP-complete for LBFS on weakly chordal graphs. A similar result for BFS was obtained by Charbit, Habib and Mamcarz in 2014. Here, we prove that the end-vertex problem is NP-complete for MNS on weakly chordal graphs and for MCS on general graphs. Moreover, building on previous results, we show that this problem is linear for various searches on split and unit interval graphs.

[1]  R. Möhring Algorithmic graph theory and perfect graphs , 1986 .

[2]  Michel Habib,et al.  Influence of the tie-break rule on the end-vertex problem , 2014, Discret. Math. Theor. Comput. Sci..

[3]  D. R. Fulkerson,et al.  Incidence matrices and interval graphs , 1965 .

[4]  Ekkehard Köhler,et al.  Recognizing Graph Search Trees , 2018, LAGOS.

[5]  U. Manbar Recognizing breadth-first search trees in linear time , 1990 .

[6]  Dieter Kratsch,et al.  End-Vertices of Graph Search Algorithms , 2015, CIAC.

[7]  S. Olariu,et al.  Optimal greedy algorithms for indifference graphs , 1992, Proceedings IEEE Southeastcon '92.

[8]  Robert E. Tarjan,et al.  Algorithmic Aspects of Vertex Elimination on Graphs , 1976, SIAM J. Comput..

[9]  Jing Huang,et al.  End-vertices of LBFS of (AT-free) bigraphs , 2015, Discret. Appl. Math..

[10]  Stephan Olariu,et al.  An Optimal Greedy Heuristic to Color Interval Graphs , 1991, Inf. Process. Lett..

[11]  Michel Habib,et al.  LDFS-Based Certifying Algorithm for the Minimum Path Cover Problem on Cocomparability Graphs , 2013, SIAM J. Comput..

[12]  Ekkehard Köhler,et al.  On end-vertices of Lexicographic Breadth First Searches , 2010, Discret. Appl. Math..

[13]  P. Sreenivasa Kumar,et al.  Minimal Vertex Separators of Chordal Graphs , 1998, Discret. Appl. Math..

[14]  Roberto Grossi,et al.  On computing the diameter of real-world undirected graphs , 2013, Theor. Comput. Sci..

[15]  Laurent Viennot,et al.  Lex-BFS and partition refinement, with applications to transitive orientation, interval graph recognition and consecutive ones testing , 2000, Theor. Comput. Sci..

[16]  Stephan Olariu,et al.  Linear Time Algorithms for Dominating Pairs in Asteroidal Triple-free Graphs , 1995, SIAM J. Comput..

[17]  Richard M. Karp,et al.  Theoretical Improvements in Algorithmic Efficiency for Network Flow Problems , 1972, Combinatorial Optimization.

[18]  Derek G. Corneil,et al.  A Unified View of Graph Searching , 2008, SIAM J. Discret. Math..

[19]  Derek G. Corneil,et al.  A simple 3-sweep LBFS algorithm for the recognition of unit interval graphs , 2004, Discret. Appl. Math..

[20]  Feodor F. Dragan,et al.  Linear Time Algorithms for Hamiltonian Problems on (Claw, Net)-Free Graphs , 1999, SIAM J. Comput..

[21]  Jean R. S. Blair,et al.  Graph Extremities Defined by Search Algorithms , 2010, Algorithms.

[22]  Stephan Olariu,et al.  The LBFS Structure and Recognition of Interval Graphs , 2009, SIAM J. Discret. Math..

[23]  C. Pandu Rangan,et al.  Linear Algorithm for Optimal Path Cover Problem on Interval Graphs , 1990, Inf. Process. Lett..

[24]  Udi Manber,et al.  Recognizing Breadth-First Search Trees in Linear Time , 1990, Information Processing Letters.

[25]  Robert E. Tarjan,et al.  Simple Linear-Time Algorithms to Test Chordality of Graphs, Test Acyclicity of Hypergraphs, and Selectively Reduce Acyclic Hypergraphs , 1984, SIAM J. Comput..

[26]  M. Golummc Algorithmic graph theory and perfect graphs , 1980 .

[27]  Rolf H. Möhring,et al.  An Incremental Linear-Time Algorithm for Recognizing Interval Graphs , 1989, SIAM J. Comput..

[28]  Anne Berry,et al.  Maximal Label Search Algorithms to Compute Perfect and Minimal Elimination Orderings , 2008, SIAM J. Discret. Math..

[29]  Zvi Ostfeld,et al.  DFS Tree Construction: Algorithms and Characterizations , 1988, WG.