On the End-Vertex Problem of Graph Searches
暂无分享,去创建一个
Ekkehard Köhler | Matjaz Krnc | Martin Strehler | Robert Scheffler | Jesse Beisegel | Nevena Pivac | Carolin Denkert | Jesse Beisegel | M. Strehler | Matjaž Krnc | Ekkehard Köhler | R. Scheffler | Nevena Pivac | C. Denkert
[1] R. Möhring. Algorithmic graph theory and perfect graphs , 1986 .
[2] Michel Habib,et al. Influence of the tie-break rule on the end-vertex problem , 2014, Discret. Math. Theor. Comput. Sci..
[3] D. R. Fulkerson,et al. Incidence matrices and interval graphs , 1965 .
[4] Ekkehard Köhler,et al. Recognizing Graph Search Trees , 2018, LAGOS.
[5] U. Manbar. Recognizing breadth-first search trees in linear time , 1990 .
[6] Dieter Kratsch,et al. End-Vertices of Graph Search Algorithms , 2015, CIAC.
[7] S. Olariu,et al. Optimal greedy algorithms for indifference graphs , 1992, Proceedings IEEE Southeastcon '92.
[8] Robert E. Tarjan,et al. Algorithmic Aspects of Vertex Elimination on Graphs , 1976, SIAM J. Comput..
[9] Jing Huang,et al. End-vertices of LBFS of (AT-free) bigraphs , 2015, Discret. Appl. Math..
[10] Stephan Olariu,et al. An Optimal Greedy Heuristic to Color Interval Graphs , 1991, Inf. Process. Lett..
[11] Michel Habib,et al. LDFS-Based Certifying Algorithm for the Minimum Path Cover Problem on Cocomparability Graphs , 2013, SIAM J. Comput..
[12] Ekkehard Köhler,et al. On end-vertices of Lexicographic Breadth First Searches , 2010, Discret. Appl. Math..
[13] P. Sreenivasa Kumar,et al. Minimal Vertex Separators of Chordal Graphs , 1998, Discret. Appl. Math..
[14] Roberto Grossi,et al. On computing the diameter of real-world undirected graphs , 2013, Theor. Comput. Sci..
[15] Laurent Viennot,et al. Lex-BFS and partition refinement, with applications to transitive orientation, interval graph recognition and consecutive ones testing , 2000, Theor. Comput. Sci..
[16] Stephan Olariu,et al. Linear Time Algorithms for Dominating Pairs in Asteroidal Triple-free Graphs , 1995, SIAM J. Comput..
[17] Richard M. Karp,et al. Theoretical Improvements in Algorithmic Efficiency for Network Flow Problems , 1972, Combinatorial Optimization.
[18] Derek G. Corneil,et al. A Unified View of Graph Searching , 2008, SIAM J. Discret. Math..
[19] Derek G. Corneil,et al. A simple 3-sweep LBFS algorithm for the recognition of unit interval graphs , 2004, Discret. Appl. Math..
[20] Feodor F. Dragan,et al. Linear Time Algorithms for Hamiltonian Problems on (Claw, Net)-Free Graphs , 1999, SIAM J. Comput..
[21] Jean R. S. Blair,et al. Graph Extremities Defined by Search Algorithms , 2010, Algorithms.
[22] Stephan Olariu,et al. The LBFS Structure and Recognition of Interval Graphs , 2009, SIAM J. Discret. Math..
[23] C. Pandu Rangan,et al. Linear Algorithm for Optimal Path Cover Problem on Interval Graphs , 1990, Inf. Process. Lett..
[24] Udi Manber,et al. Recognizing Breadth-First Search Trees in Linear Time , 1990, Information Processing Letters.
[25] Robert E. Tarjan,et al. Simple Linear-Time Algorithms to Test Chordality of Graphs, Test Acyclicity of Hypergraphs, and Selectively Reduce Acyclic Hypergraphs , 1984, SIAM J. Comput..
[26] M. Golummc. Algorithmic graph theory and perfect graphs , 1980 .
[27] Rolf H. Möhring,et al. An Incremental Linear-Time Algorithm for Recognizing Interval Graphs , 1989, SIAM J. Comput..
[28] Anne Berry,et al. Maximal Label Search Algorithms to Compute Perfect and Minimal Elimination Orderings , 2008, SIAM J. Discret. Math..
[29] Zvi Ostfeld,et al. DFS Tree Construction: Algorithms and Characterizations , 1988, WG.