Solution of Linear Electrical Circuit Problem Using Neural Networks

paper, Neural network algorithm is introduced to study the singular system of a linear electrical circuit for time invariant and time varying cases. The discrete solutions obtained using neural network are compared with Runge-Kutta(RK) method and exact solutions of the electrical circuit problem and are found to be very accurate. Error graphs for inductor currents and capacitor voltages are presented in a graphical form to show the efficiency of neural network algorithm. This neural network algorithm can be easily implemented in a digital computer for any singular system of electrical circuits.

[1]  D.R. Hush,et al.  Progress in supervised neural networks , 1993, IEEE Signal Processing Magazine.

[2]  James L. McClelland,et al.  Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations , 1986 .

[3]  David J. Evans,et al.  A comparison of extended runge-kutta formulae based on variety of means to solve system of ivps , 2001, Int. J. Comput. Math..

[4]  Kurt Hornik,et al.  Neural Network Models , 2011 .

[5]  David J. Evans,et al.  Analysis of second order multivariate linear system using single term walsh series technique and runge kutta method , 1999, Int. J. Comput. Math..

[6]  D. Hammerstrom,et al.  Neural networks at work , 1993, IEEE Spectrum.

[7]  David J. Evans A new 4th order runge-kutta method for initial value problems with error control , 1991, Int. J. Comput. Math..

[8]  Tomonobu Senjyu,et al.  Next Day Peak Load Forecasting Using Neural Network With Adaptive Learning Algorithm Based On Similarity , 2000 .

[9]  David J. Evans,et al.  A new fifth order weighted runge kutta formula , 1996, Int. J. Comput. Math..

[10]  Marco Furini,et al.  International Journal of Computer and Applications , 2010 .

[11]  Kevin N. Gurney,et al.  An introduction to neural networks , 2018 .

[12]  S. Campbell Singular systems of differential equations II , 1980 .

[13]  Jyh-Shing Roger Jang,et al.  Self-learning fuzzy controllers based on temporal backpropagation , 1992, IEEE Trans. Neural Networks.

[14]  David J. Evans,et al.  Weighted fifth-order Runge-Kutta formulas for second-order differential equations , 1998, Int. J. Comput. Math..

[15]  R. Alexander,et al.  Runge-Kutta methods and differential-algebraic systems , 1990 .

[16]  R. Lippmann,et al.  An introduction to computing with neural nets , 1987, IEEE ASSP Magazine.

[17]  S. Campbell Singular Systems of Differential Equations , 1980 .

[18]  L. Dai,et al.  Singular Control Systems , 1989, Lecture Notes in Control and Information Sciences.

[19]  Leon O. Chua,et al.  Computer-Aided Analysis Of Electronic Circuits , 1975 .

[20]  Dimitrios I. Fotiadis,et al.  Artificial neural networks for solving ordinary and partial differential equations , 1997, IEEE Trans. Neural Networks.

[21]  Patrick van der Smagt,et al.  Introduction to neural networks , 1995, The Lancet.

[22]  Carver Mead,et al.  Analog VLSI and neural systems , 1989 .

[23]  James A. Anderson,et al.  Neurocomputing: Foundations of Research , 1988 .

[24]  David J. Evans,et al.  A Fourth Order Embedded Runge-Kutta RKACeM(4,4) Method Based on Arithmetic and Centroidal Means with Error Control , 2002, Int. J. Comput. Math..

[25]  Fathi M. A. Salam,et al.  On the analysis of dynamic feedback neural nets , 1991 .

[26]  David J. Evans,et al.  Analysis of different second order systems via runge-kutta method , 1999, Int. J. Comput. Math..

[27]  David J. Evans,et al.  Analysis of non-linear singular system from fluid dynamics using extended runge-kutta methods , 2000, Int. J. Comput. Math..

[28]  G. Kane Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol 1: Foundations, vol 2: Psychological and Biological Models , 1994 .

[29]  Tomonobu Senjyu, Hirokazu Sakihara, Yoshinori Tamaki, Katsu Next Day Peak Load Forecasting Using Neural Network With Adaptive Learning Algorithm Based On Similarity , 2000 .

[30]  Shun-ichi Amari,et al.  Mathematical foundations of neurocomputing , 1990, Proc. IEEE.

[31]  Kumpati S. Narendra,et al.  Gradient methods for the optimization of dynamical systems containing neural networks , 1991, IEEE Trans. Neural Networks.

[32]  J. Lambert Numerical Methods for Ordinary Differential Systems: The Initial Value Problem , 1991 .

[33]  R. Hecht-Nielsen Nearest matched filter classification of spatiotemporal patterns. , 1987, Applied optics.

[34]  M. Srinath,et al.  Conjugate gradient techniques for adaptive filtering , 1989, IEEE International Symposium on Circuits and Systems,.

[35]  F. Lewis A survey of linear singular systems , 1986 .