Restricted diffusion of OXPHOS complexes in dynamic mitochondria delays their exchange between cristae and engenders a transitory mosaic distribution

Summary Mitochondria are involved in cellular energy supply, signaling and apoptosis. Their ability to fuse and divide provides functional and morphological flexibility and is a key feature in mitochondrial quality maintenance. To study the impact of mitochondrial fusion/fission on the reorganization of inner membrane proteins, oxidative phosphorylation (OXPHOS) complexes in mitochondria of different HeLa cells were tagged with fluorescent proteins (GFP and DsRed-HA), and cells were fused by polyethylene glycol treatment. Redistribution of the tagged OXPHOS complexes was then followed by means of immunoelectron microscopy, two color super-resolution fluorescence microscopy and single molecule tracking. In contrast to outer membrane and matrix proteins, which mix quickly and homogeneously upon mitochondrial fusion, the mixing of inner membrane proteins was decelerated. Our data suggest that the composition of cristae is preserved during fusion of mitochondria and that cristae with mixed OXPHOS complexes are only slowly and successively formed by restricted diffusion of inner membrane proteins into existing cristae. The resulting transitory mosaic composition of the inner mitochondrial membrane illuminates mitochondrial heterogeneity and potentially is linked to local differences in function and membrane potential.

[1]  O. Shirihai,et al.  Mitochondrial ‘kiss‐and‐run’: interplay between mitochondrial motility and fusion–fission dynamics , 2009, The EMBO journal.

[2]  A. Pearse,et al.  Fine Structural Localization of Succinoxidase Complex on the Mitochondrial Cristae , 1969, Nature.

[3]  L. Scorrano,et al.  During autophagy mitochondria elongate, are spared from degradation and sustain cell viability , 2011, Nature Cell Biology.

[4]  M. Beal,et al.  Mitochondria take center stage in aging and neurodegeneration , 2005, Annals of neurology.

[5]  Matthias Mann,et al.  The mitochondrial contact site complex, a determinant of mitochondrial architecture , 2011, The EMBO journal.

[6]  R. Jagasia,et al.  Formation of cristae and crista junctions in mitochondria depends on antagonism between Fcj1 and Su e/g , 2009, The Journal of cell biology.

[7]  J. Lippincott-Schwartz,et al.  Together we are stronger , 2011, Autophagy.

[8]  C. Cifuentes-Díaz,et al.  Separate fusion of outer and inner mitochondrial membranes , 2005, EMBO reports.

[9]  B. Lu Mitochondrial dynamics and neurodegeneration , 2009, Current neurology and neuroscience reports.

[10]  J. Bereiter-Hahn,et al.  Do single mitochondria contain zones with different membrane potential , 1998 .

[11]  S. Jakobs,et al.  MINOS1 is a conserved component of mitofilin complexes and required for mitochondrial function and cristae organization , 2012, Molecular biology of the cell.

[12]  Sara Cipolat,et al.  OPA1 Controls Apoptotic Cristae Remodeling Independently from Mitochondrial Fusion , 2006, Cell.

[13]  Shin-ichi Arimura,et al.  Frequent fusion and fission of plant mitochondria with unequal nucleoid distribution. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[14]  W. Kühlbrandt,et al.  Arrangement of electron transport chain components in bovine mitochondrial supercomplex I1III2IV1 , 2011, The EMBO journal.

[15]  A. Sergé,et al.  Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes , 2008, Nature Methods.

[16]  O. Shirihai,et al.  Mitochondrial fusion, fission and autophagy as a quality control axis: the bioenergetic view. , 2008, Biochimica et biophysica acta.

[17]  Jürgen Bereiter-Hahn,et al.  Mitochondrial dynamics. , 2010, International review of cell and molecular biology.

[18]  W. Meier-Ruge,et al.  Quantitative cytochemical mapping of mitochondrial enzymes in rat cerebella. , 2001, Micron.

[19]  J. Bereiter-Hahn,et al.  Decreased expression of Drp1 and Fis1 mediates mitochondrial elongation in senescent cells and enhances resistance to oxidative stress through PINK1 , 2010, Journal of Cell Science.

[20]  K. Tokuyasu A study of positive staining of ultrathin frozen sections. , 1978, Journal of ultrastructure research.

[21]  R. Gilkerson,et al.  The cristal membrane of mitochondria is the principal site of oxidative phosphorylation , 2003, FEBS letters.

[22]  R. Carrozzo,et al.  Supercomplexes and subcomplexes of mitochondrial oxidative phosphorylation. , 2006, Biochimica et biophysica acta.

[23]  Michael D. Mason,et al.  Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. , 2006, Biophysical journal.

[24]  O. Shirihai,et al.  Frequency and selectivity of mitochondrial fusion are key to its quality maintenance function. , 2009, Biophysical journal.

[25]  S. Hess,et al.  Imaging biological structures with fluorescence photoactivation localization microscopy , 2009, Nature Protocols.

[26]  W. Kühlbrandt,et al.  Dimer ribbons of ATP synthase shape the inner mitochondrial membrane , 2008, The EMBO journal.

[27]  S. Campello,et al.  Mitochondrial shape changes: orchestrating cell pathophysiology , 2010, EMBO reports.

[28]  Jürgen Bereiter-Hahn,et al.  Respiratory Chain Complexes in Dynamic Mitochondria Display a Patchy Distribution in Life Cells , 2010, PloS one.

[29]  Jacob Piehler,et al.  Nanoscale organization of mitochondrial microcompartments revealed by combining tracking and localization microscopy. , 2012, Nano letters.

[30]  J. Martinou,et al.  hFis1, a Novel Component of the Mammalian Mitochondrial Fission Machinery* , 2003, Journal of Biological Chemistry.

[31]  M. Prescott,et al.  Cross-linking ATP synthase complexes in vivo eliminates mitochondrial cristae , 2004, Journal of Cell Science.

[32]  W. Webb,et al.  Precise nanometer localization analysis for individual fluorescent probes. , 2002, Biophysical journal.

[33]  James P. Reid,et al.  Tagging and tracking , 2001 .

[34]  S. Hess,et al.  Triple-color super-resolution imaging of live cells: resolving submicroscopic receptor organization in the plasma membrane. , 2012, Angewandte Chemie.

[35]  E. Boekema,et al.  Structure of a mitochondrial supercomplex formed by respiratory-chain complexes I and III. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[36]  M. Perotti,et al.  Quantitative cytochemistry of the diaminobenzidine cytochrome oxidase reaction product in mitochondria of cardiac muscle and pancreas. , 1983, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[37]  A. Leslie,et al.  Bioenergetic cost of making an adenosine triphosphate molecule in animal mitochondria , 2010, Proceedings of the National Academy of Sciences.

[38]  W. Kühlbrandt,et al.  Macromolecular organization of ATP synthase and complex I in whole mitochondria , 2011, Proceedings of the National Academy of Sciences.

[39]  H. Braun,et al.  Identification and Characterization of Respirasomes in Potato Mitochondria1 , 2004, Plant Physiology.

[40]  D. Parsons Mitochondrial Structure: Two Types of Subunits on Negatively Stained Mitochondrial Membranes , 1963, Science.

[41]  K. Pfeiffer,et al.  Supercomplexes in the respiratory chains of yeast and mammalian mitochondria , 2000, The EMBO journal.

[42]  N. Dencher,et al.  Architecture of Active Mammalian Respiratory Chain Supercomplexes* , 2006, Journal of Biological Chemistry.

[43]  J. Bereiter-Hahn,et al.  Anomalous Diffusion Induced by Cristae Geometry in the Inner Mitochondrial Membrane , 2009, PloS one.

[44]  P. Saffman,et al.  Brownian motion in biological membranes. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[45]  O. Shirihai,et al.  What can mitochondrial heterogeneity tell us about mitochondrial dynamics and autophagy? , 2009, The international journal of biochemistry & cell biology.

[46]  J. Smeitink,et al.  Life cell quantification of mitochondrial membrane potential at the single organelle level , 2008, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[47]  J. Norgauer,et al.  Histamine modulates γδ‐T lymphocyte migration and cytotoxicity, via Gi and Gs protein‐coupled signalling pathways , 2010, British journal of pharmacology.

[48]  J. Vasiliev,et al.  Thread-grain transition of mitochondrial reticulum as a step of mitoptosis and apoptosis , 2004, Molecular and Cellular Biochemistry.

[49]  M. McNiven,et al.  The Mitochondrial Protein hFis1 Regulates Mitochondrial Fission in Mammalian Cells through an Interaction with the Dynamin-Like Protein DLP1 , 2003, Molecular and Cellular Biology.

[50]  Mark H Ellisman,et al.  The Micro-Architecture of Mitochondria at Active Zones: Electron Tomography Reveals Novel Anchoring Scaffolds and Cristae Structured for High-Rate Metabolism , 2010, The Journal of Neuroscience.

[51]  J. Bereiter-Hahn,et al.  Determination of protein mobility in mitochondrial membranes of living cells. , 2010, Biochimica et biophysica acta.

[52]  I. A. Telley,et al.  Fluorescence microscopy assays on chemically functionalized surfaces for quantitative imaging of microtubule, motor, and +TIP dynamics. , 2010, Methods in cell biology.

[53]  W. Kühlbrandt,et al.  Structure of the yeast F1Fo-ATP synthase dimer and its role in shaping the mitochondrial cristae , 2012, Proceedings of the National Academy of Sciences.

[54]  Peter Lipp,et al.  Mitochondria are morphologically and functionally heterogeneous within cells , 2002, The EMBO journal.

[55]  W. Wooster,et al.  Crystal structure of , 2005 .

[56]  Marlon Dumas,et al.  The Architecture , 2010, Modern Business Process Automation.

[57]  J. Hayashi,et al.  Interaction theory of mammalian mitochondria. , 2001, Biochemical and biophysical research communications.

[58]  F. L. Crane,et al.  Structure of mitochondrial cristae membranes. , 1974, Biochimica et biophysica acta.

[59]  J. Martinou,et al.  Dual role of mitofilin in mitochondrial membrane organization and protein biogenesis. , 2011, Developmental cell.

[60]  W. Annaert,et al.  A Novel Flat-embedding Method to Prepare Ultrathin Cryosections from Cultured Cells in Their In Situ Orientation , 2002, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[61]  M. Tokunaga,et al.  Highly inclined thin illumination enables clear single-molecule imaging in cells , 2008, Nature Methods.

[62]  K. Tokuyasu A TECHNIQUE FOR ULTRACRYOTOMY OF CELL SUSPENSIONS AND TISSUES , 1973, The Journal of cell biology.

[63]  S. Hell,et al.  Nanoscale distribution of mitochondrial import receptor Tom20 is adjusted to cellular conditions and exhibits an inner-cellular gradient , 2011, Proceedings of the National Academy of Sciences.

[64]  Z. Rao,et al.  Crystal Structure of Mitochondrial Respiratory Membrane Protein Complex II , 2005, Cell.

[65]  Jean-Claude Martinou,et al.  SLP‐2 is required for stress‐induced mitochondrial hyperfusion , 2009, The EMBO journal.

[66]  A. Reichert,et al.  Dynamic subcompartmentalization of the mitochondrial inner membrane , 2006, The Journal of cell biology.

[67]  S. Wilkens,et al.  Structure of dimeric mitochondrial ATP synthase: novel F0 bridging features and the structural basis of mitochondrial cristae biogenesis. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[68]  J. Hayashi,et al.  Human cells are protected from mitochondrial dysfunction by complementation of DNA products in fused mitochondria , 2001, Nature Genetics.

[69]  U. Brunk,et al.  Lysosomes and oxidative stress in aging and apoptosis. , 2008, Biochimica et biophysica acta.

[70]  Petra Schwille,et al.  Translational diffusion in lipid membranes beyond the Saffman-Delbruck approximation. , 2008, Biophysical journal.

[71]  J. di Rago,et al.  The ATP synthase is involved in generating mitochondrial cristae morphology , 2002, The EMBO journal.

[72]  S. Yoshikawa,et al.  Crystal Structure of Bovine Heart Cytochrome c Oxidase at 2.8 Å Resolution , 1998, Journal of bioenergetics and biomembranes.

[73]  O. Shirihai,et al.  Tagging and tracking individual networks within a complex mitochondrial web with photoactivatable GFP. , 2006, American journal of physiology. Cell physiology.

[74]  K. Mihara,et al.  Regulation of mitochondrial morphology by membrane potential, and DRP1-dependent division and FZO1-dependent fusion reaction in mammalian cells. , 2003, Biochemical and biophysical research communications.

[75]  Benedikt Westermann,et al.  A mitochondrial-focused genetic interaction map reveals a scaffold-like complex required for inner membrane organization in mitochondria , 2011, The Journal of cell biology.

[76]  Sung-Hou Kim,et al.  Electron transfer by domain movement in cytochrome bc1 , 1998, Nature.

[77]  Zvulun Elazar,et al.  ROS, mitochondria and the regulation of autophagy. , 2007, Trends in cell biology.

[78]  J Frank,et al.  The internal compartmentation of rat‐liver mitochondria: Tomographic study using the high‐voltage transmission electron microscope , 1994, Microscopy research and technique.

[79]  J. Bereiter-Hahn,et al.  Mitochondrial dynamics generate equal distribution but patchwork localization of respiratory Complex I , 2006, Molecular membrane biology.

[80]  Rouslan G. Efremov,et al.  The architecture of respiratory complex I , 2010, Nature.

[81]  T. Langer,et al.  Membrane protein degradation by AAA proteases in mitochondria. , 2002, Biochimica et biophysica acta.

[82]  J. Bereiter-Hahn,et al.  Dynamics of mitochondria in living cells: Shape changes, dislocations, fusion, and fission of mitochondria , 1994, Microscopy research and technique.

[83]  J. Piehler,et al.  Selective targeting of fluorescent nanoparticles to proteins inside live cells. , 2011, Angewandte Chemie.