Modeling and Control of Robots on Rough Terrain

In this chapter, we introduce modeling and control for wheeled mobile robots and tracked vehicles. The target environment is rough terrains, which includes both deformable soil and heaps of rubble. Therefore, the topics are roughly divided into two categories, wheeled robots on deformable soil and tracked vehicles on heaps of rubble.

[1]  Giuseppe Oriolo,et al.  Feedback control of a nonholonomic car-like robot , 1998 .

[2]  Sachiko Wakabayashi,et al.  Design and mobility evaluation of tracked lunar vehicle , 2009 .

[3]  Karl Iagnemma,et al.  Predictable mobility , 2009, IEEE Robotics & Automation Magazine.

[4]  Peter W Haley,et al.  The AMC '74 Mobility Model , 1975 .

[5]  Shigeo Hirose,et al.  Normalized energy stability margin and its contour of walking vehicles on rough terrain , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[6]  Nildeep Patel,et al.  The ExoMars rover locomotion subsystem , 2010 .

[7]  Randel A. Lindemann,et al.  Mars exploration rover mobility development , 2006, IEEE Robotics & Automation Magazine.

[8]  Brian A. Weiss,et al.  Test arenas and performance metrics for urban search and rescue robots , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[9]  Hiroshi Nakashima,et al.  Parametric analysis of lugged wheel performance for a lunar microrover by means of DEM , 2007 .

[10]  Yong Huang,et al.  Trafficability analysis of lunar mare terrain by means of the discrete element method for wheeled rover locomotion , 2010 .

[11]  Steven Dubowsky,et al.  Online terrain parameter estimation for wheeled mobile robots with application to planetary rovers , 2004, IEEE Transactions on Robotics.

[12]  Kazuya Yoshida,et al.  Shared autonomy system for tracked vehicles on rough terrain based on continuous three‐dimensional terrain scanning , 2011, J. Field Robotics.

[13]  Urbano Nunes,et al.  Path-following control of mobile robots in presence of uncertainties , 2005, IEEE Transactions on Robotics.

[14]  Karl Iagnemma,et al.  Statistical mobility prediction for planetary surface exploration rovers in uncertain terrain , 2010, 2010 IEEE International Conference on Robotics and Automation.

[15]  A. R. Reece,et al.  Prediction of rigid wheel performance based on the analysis of soil-wheel stresses part I. Performance of driven rigid wheels , 1967 .

[16]  Takashi Tsubouchi,et al.  Controlled balance losing in random step environment for path planning of a teleoperated crawler‐type vehicle , 2011, J. Field Robotics.

[17]  Kazuya Yoshida,et al.  Slope traversal controls for planetary exploration rover on sandy terrain , 2009 .

[18]  Hiroshi Shimizu,et al.  Discrete element method analysis of single wheel performance for a small lunar rover on sloped terrain , 2010 .

[19]  Karl Iagnemma,et al.  A Laboratory Single Wheel Testbed for Studying Planetary Rover Wheel-Terrain Interaction , 2005 .

[20]  Masahiko Onosato,et al.  Two attempts at linking robots with disaster information: InfoBalloon and gareki engineering , 2002, Adv. Robotics.

[21]  Kaspar Althoefer,et al.  Soil parameter identification for wheel-terrain interaction dynamics and traversability prediction , 2006, Int. J. Autom. Comput..

[22]  K. Iagnemma,et al.  Terramechanics Modeling of Mars Surface Exploration Rovers for Simulation and Parameter Estimation , 2011 .

[23]  Matthew Spenko,et al.  A modified pressure–sinkage model for small, rigid wheels on deformable terrains , 2011 .

[24]  Bernd Schäfer,et al.  Multibody System Modelling and Simulation of Planetary Rover Mobility on Soft Terrain , 2005 .

[25]  Ingobert C. Schmid,et al.  Interaction of vehicle and terrain results from 10 years research at IKK , 1995 .

[26]  Timothy D. Barfoot,et al.  DEVELOPMENT OF A DYNAMIC SIMULATION TOOL FOR THE EXOMARS ROVER , 2007 .

[27]  D. Inoue,et al.  Whole-Body Touch Sensors for Tracked Mobile Robots Using Force-sensitive Chain Guides , 2008, 2008 IEEE International Workshop on Safety, Security and Rescue Robotics.

[28]  A. Jain,et al.  Recent developments in the ROAMS planetary rover simulation environment , 2004, 2004 IEEE Aerospace Conference Proceedings (IEEE Cat. No.04TH8720).

[29]  Eijiro Takeuchi,et al.  Rollover avoidance using a stability margin for a tracked vehicle with sub-tracks , 2009, 2009 IEEE International Workshop on Safety, Security & Rescue Robotics (SSRR 2009).

[30]  Kazuya Yoshida,et al.  Terramechanics‐based model for steering maneuver of planetary exploration rovers on loose soil , 2007, J. Field Robotics.

[31]  Stergios I. Roumeliotis,et al.  Slip-compensated path following for planetary exploration rovers , 2006, Adv. Robotics.

[32]  A. R. Reece,et al.  Prediction of rigid wheel performance based on the analysis of soil-wheel stresses , 1967 .

[33]  Kazuya Yoshida,et al.  Planetary rovers’ wheel–soil interaction mechanics: new challenges and applications for wheeled mobile robots , 2011, Intell. Serv. Robotics.

[34]  Masahiko Onosato,et al.  Digital gareki archives: An approach to know more about collapsed houses for supporting search and rescue activities , 2012, 2012 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR).

[35]  Daniel M. Helmick,et al.  Experimental Results from a Terrain Adaptive Navigation System for Planetary Rovers , 2008 .

[36]  Chen Li,et al.  A Terradynamics of Legged Locomotion on Granular Media , 2013, Science.

[37]  Kazuya Yoshida,et al.  Accurate estimation of drawbar pull of wheeled mobile robots traversing sandy terrain using built-in force sensor array wheel , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[38]  Jo Yung Wong,et al.  Theory of ground vehicles , 1978 .

[39]  Kazuya Yoshida,et al.  TERRAMECHANICS-BASED ANALYSIS ON SLOPE TRAVERSABILITY FOR A PLANETARY EXPLORATION ROVER , 2006 .

[40]  Brian Yamauchi,et al.  PackBot: a versatile platform for military robotics , 2004, SPIE Defense + Commercial Sensing.

[41]  Yang Cheng,et al.  Path following using visual odometry for a Mars rover in high-slip environments , 2004, 2004 IEEE Aerospace Conference Proceedings (IEEE Cat. No.04TH8720).

[42]  Charles A. Klein,et al.  Automatic body regulation for maintaining stability of a legged vehicle during rough-terrain locomotion , 1985, IEEE J. Robotics Autom..

[43]  Sungchul Kang,et al.  ROBHAZ-DT3: teleoperated mobile platform with passively adaptive double-track for hazardous environment applications , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[44]  M. G. Bekker Introduction to Terrain-Vehicle Systems , 1969 .

[45]  Eduardo Mario Nebot,et al.  Car-like robot path following in large unstructured environments , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[46]  Martial Hebert,et al.  Natural terrain classification using 3-d ladar data , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.