On the calculation of ab initio quantum molecular similarities for large systems: Fitting the electron density

A set of procedures for rapid calculation of quantum molecular similarities from ab initio wave functions is discussed. In all cases a density fitting is carried out to eliminate the need of calculating costly four‐centered integrals. It is proved that this methodology can be applied to large systems to reproduce exact quantum molecular similarity measures at an extremely low computational cost. © 1994 by John Wiley & Sons, Inc.

[1]  Paul G. Mezey,et al.  Shape-similarity measures for molecular bodies: A 3D topological approach to quantitative shape-activity relations , 1992, J. Chem. Inf. Comput. Sci..

[2]  Ferran Sanz,et al.  Automatic search for maximum similarity between molecular electrostatic potential distributions , 1991, J. Comput. Aided Mol. Des..

[3]  P. C. Hariharan,et al.  The influence of polarization functions on molecular orbital hydrogenation energies , 1973 .

[4]  Edward E. Hodgkin,et al.  Molecular similarity based on electrostatic potential and electric field , 1987 .

[5]  Ramon Carbot,et al.  Electrostatic potential comparison and molecular metric spaces , 1986 .

[6]  Donald W. Brenner,et al.  Geometric and electronic structures of C60H60, C60F60, and C60H36 , 1991 .

[7]  Ramon Carbo,et al.  How similar is a molecule to another? An electron density measure of similarity between two molecular structures , 1980 .

[8]  Ferran Sanz,et al.  Maximum electrostatic similarity between biomolecules optimizing both relative positions and conformations , 1991 .

[9]  Matt Challacombe,et al.  Maximum similarity orbitals for analysis of the electronic excited states , 1991 .

[10]  Blanca Calabuig,et al.  Molsimil - 88: Molecular similarity calculations using a CNDO-like approximation , 1989 .

[11]  P. Karplus,et al.  Refined structure of glutathione reductase at 1.54 A resolution. , 1987, Journal of molecular biology.

[12]  Andrew C. Good,et al.  Utilization of Gaussian functions for the rapid evaluation of molecular similarity , 1992, J. Chem. Inf. Comput. Sci..

[13]  John R. Sabin,et al.  On some approximations in applications of Xα theory , 1979 .

[14]  B. Delley,et al.  Efficient and accurate expansion methods for molecules in local density models , 1982 .

[15]  Ferran Sanz,et al.  Complete or partial comparison of molecular electrostatic potential distributions? some tests with 5-HT ligands , 1992 .

[16]  Ramon Carbó,et al.  Quantum molecular similarity measures and the n-dimensional representation of a molecular set : phenyldimethylthiazines , 1992 .

[17]  Tom Ziegler,et al.  The determination of molecular structures by density functional theory. The evaluation of analytical energy gradients by numerical integration , 1988 .

[18]  J. Pople,et al.  Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules , 1972 .

[19]  Paul G. Mezey,et al.  The shape of molecular charge distributions: Group theory without symmetry , 1987 .

[20]  Catherine Burt,et al.  The application of molecular similarity calculations , 1990 .

[21]  J. Almlöf,et al.  Integral approximations for LCAO-SCF calculations , 1993 .

[22]  Zlatko Mihalić,et al.  A graph-theoretical approach to structure-property relationships , 1992 .

[23]  Jerzy Cioslowski,et al.  Quantifying the Hammond postulate : intramolecular proton transfer in substituted hydrogen catecholate anions , 1991 .

[24]  G. Schulz,et al.  The catalytic mechanism of glutathione reductase as derived from x-ray diffraction analyses of reaction intermediates. , 1983, The Journal of biological chemistry.

[25]  W. G. Richards,et al.  Rapid evaluation of shape similarity using Gaussian functions , 1993, J. Chem. Inf. Comput. Sci..

[26]  Jerzy Cioslowski Differential density matrix overlap: an index for assessment of electron correlation in atoms and molecules , 1992 .

[27]  Eugene D. Fleischmann,et al.  Assessing molecular similarity from results of ab initio electronic structure calculations , 1991 .

[28]  Ann M. Richard,et al.  Quantitative comparison of molecular electrostatic potentials for structure‐activity studies , 1991 .

[29]  J. V. Ortiz,et al.  Molecular similarity indices in electron propagator theory , 1991 .

[30]  Milan Randić,et al.  Generalized molecular descriptors , 1991 .

[31]  R. Carbó,et al.  Molecular quantum similarity measures and N‐dimensional representation of quantum objects. II. Practical applications , 1992 .

[32]  J. Pople,et al.  Self‐Consistent Molecular‐Orbital Methods. I. Use of Gaussian Expansions of Slater‐Type Atomic Orbitals , 1969 .

[33]  Ramon Carbó,et al.  LCAO–MO similarity measures and taxonomy† , 1987 .

[34]  L. Fernandez Pacios Simple analytical representation of atomic electron charge densities, electrostatic potentials, and local exchange potentials , 1992 .

[35]  James S. Sumner,et al.  Stereochemistry and mechanism of hydrogen transfer between NADPH and methylenetetrahydrofolate in the reaction catalyzed by methylenetetrahydrofolate reductase from pig liver , 1992 .

[36]  R. Carbó,et al.  Molecular quantum similarity measures and N-dimensional representation of quantum objects. I. Theoretical foundations† , 1992 .

[37]  Milan Randic Chemical structure—What is "she"? , 1992 .

[38]  C. Van Alsenoy,et al.  Ab initio calculations on large molecules: The multiplicative integral approximation , 1988 .

[39]  Mark S. Gordon,et al.  Self‐consistent molecular orbital methods. XXIII. A polarization‐type basis set for second‐row elements , 1982 .

[40]  David L. Cooper,et al.  Ab initio computation of molecular similarity , 1985 .

[41]  P Willett,et al.  Identification of tertiary structure resemblance in proteins using a maximal common subgraph isomorphism algorithm. , 1993, Journal of molecular biology.

[42]  Ronald H. Felton,et al.  A new computational approach to Slater’s SCF–Xα equation , 1975 .

[43]  Stephen W. Taylor,et al.  Modeling the potential of a charge distribution , 1992 .

[44]  Paul G. Mezey,et al.  Similarity analysis in two and three dimensions using lattice animals and polycubes , 1992 .