THERAPIE GENIQUE ET ANGIOGENESE THERAPEUTIQUE

ans une situation d’ischémie sévère, l’un des moyens d’adaptation de l’organisme est le développement d’une circulation collatérale de suppléance (1). Au niveau du myocarde par exemple, le développement d’une telle circulation peut minimiser les conséquences de l’occlusion d’un gros tronc épicardique. Dans certains cas rares, l’existence de ce type de circulation peut même entraîner une “revascularisation” complète du territoire qui dépend du ou des vaisseau(x) occlus. Cependant, cette circulation collatérale, bien connue des cliniciens, est le plus souvent insuffisamment développée pour assurer une vascularisation satisfaisante du tissu à risque.

[1]  J. Isner,et al.  Potentiated angiogenic effect of scatter factor/hepatocyte growth factor via induction of vascular endothelial growth factor: the case for paracrine amplification of angiogenesis. , 1998, Circulation.

[2]  J. Isner,et al.  Hypercholesterolemia attenuates angiogenesis but does not preclude augmentation by angiogenic cytokines. , 1997, Circulation.

[3]  J. Isner,et al.  Direct intramuscular gene transfer of naked DNA encoding vascular endothelial growth factor augments collateral development and tissue perfusion. , 1996, Circulation.

[4]  J. Isner,et al.  Gene transfer of naked DNA encoding for three isoforms of vascular endothelial growth factor stimulates collateral development in vivo. , 1996, Laboratory investigation; a journal of technical methods and pathology.

[5]  Takayuki Asahara,et al.  Clinical evidence of angiogenesis after arterial gene transfer of phVEGF165 in patient with ischaemic limb , 1996, The Lancet.

[6]  L. F. Fajardo,et al.  Transforming growth factor beta1 induces angiogenesis in vivo with a threshold pattern. , 1996, Laboratory investigation; a journal of technical methods and pathology.

[7]  J. Isner,et al.  Revascularization achieved by therapeutic angiogenesis is associated with improvement of tissue perfusion , 1996 .

[8]  Atsushi Namiki,et al.  Hypoxia Induces Vascular Endothelial Growth Factor in Cultured Human Endothelial Cells (*) , 1995, The Journal of Biological Chemistry.

[9]  J. Isner,et al.  Synergistic effect of vascular endothelial growth factor and basic fibroblast growth factor on angiogenesis in vivo. , 1995, Circulation.

[10]  J. Isner,et al.  Recovery of disturbed endothelium-dependent flow in the collateral-perfused rabbit ischemic hindlimb after administration of vascular endothelial growth factor. , 1995, Circulation.

[11]  Jason A. Lowry,et al.  Arterial gene therapy for therapeutic angiogenesis in patients with peripheral artery disease. , 1995, Circulation.

[12]  K. Walgenbach,et al.  Ischaemia-induced expression of bFGF in normal skeletal muscle: A potential paracrine mechanism for mediating angiogenesis in ischaemic skeletal muscle , 1995, Nature Medicine.

[13]  J. Isner,et al.  Site-specific therapeutic angiogenesis after systemic administration of vascular endothelial growth factor. , 1995, Journal of vascular surgery.

[14]  I. Morita,et al.  Three isoforms of platelet-derived growth factors all have the capability to induce angiogenesis in vivo. , 1994, Biological & pharmaceutical bulletin.

[15]  Y. Kira,et al.  Rapid induction of vascular endothelial growth factor expression by transient ischemia in rat heart. , 1994, The American journal of physiology.

[16]  S. Epstein,et al.  Angiogenic-induced enhancement of collateral blood flow to ischemic myocardium by vascular endothelial growth factor in dogs. , 1994, Circulation.

[17]  S. Epstein,et al.  Basic fibroblast growth factor enhances myocardial collateral flow in a canine model. , 1994, The American journal of physiology.

[18]  E. Brogi,et al.  Therapeutic angiogenesis. A single intraarterial bolus of vascular endothelial growth factor augments revascularization in a rabbit ischemic hind limb model. , 1994, The Journal of clinical investigation.

[19]  C. Bloor,et al.  Heparin Accelerates Coronary Collateral Development in a Porcine Model of Coronary Artery Occlusion , 1993, Circulation.

[20]  J. Garb,et al.  Enhanced angiogenesis and growth of collaterals by in vivo administration of recombinant basic fibroblast growth factor in a rabbit model of acute lower limb ischemia: dose-response effect of basic fibroblast growth factor. , 1992, Journal of vascular surgery.

[21]  B. Wasylyk,et al.  The c‐Ets oncoprotein activates the stromelysin promoter through the same elements as several non‐nuclear oncoproteins. , 1991, The EMBO journal.

[22]  P. Rørth,et al.  Transcription factor PEA3 participates in the induction of urokinase plasminogen activator transcription in murine keratinocytes stimulated with epidermal growth factor or phorbol-ester. , 1990, Nucleic acids research.

[23]  B. Wasylyk,et al.  The collagenase gene promoter contains a TPA and oncogene‐responsive unit encompassing the PEA3 and AP‐1 binding sites. , 1990, The EMBO journal.

[24]  D. Harrison,et al.  Endothelial modulation of the coronary vasculature in vessels perfused via mature collaterals. , 1990, Circulation.

[25]  E. Brogi,et al.  Indirect angiogenic cytokines upregulate VEGF and bFGF gene expression in vascular smooth muscle cells, whereas hypoxia upregulates VEGF expression only. , 1994, Circulation.

[26]  W. Schaper Coronary Collateral Development: Concepts and Hypotheses , 1992 .

[27]  B. Vandenbunder,et al.  c-ets1 proto-oncogene is a transcription factor expressed in endothelial cells during tumor vascularization and other forms of angiogenesis in humans. , 1992, The American journal of pathology.