Changes in the criticality of Hopf bifurcations due to certain model reduction techniques in systems with multiple timescales

A major obstacle in the analysis of many physiological models is the issue of model simplification. Various methods have been used for simplifying such models, with one common technique being to eliminate certain 'fast' variables using a quasi-steady-state assumption. In this article, we show when such a physiological model reduction technique in a slow-fast system is mathematically justified. We provide counterexamples showing that this technique can give erroneous results near the onset of oscillatory behaviour which is, practically, the region of most importance in a model. In addition, we show that the singular limit of the first Lyapunov coefficient of a Hopf bifurcation in a slow-fast system is, in general, not equal to the first Lyapunov coefficient of the Hopf bifurcation in the corresponding layer problem, a seemingly counterintuitive result. Consequently, one cannot deduce, in general, the criticality of a Hopf bifurcation in a slow-fast system from the lower-dimensional layer problem.

[1]  Neil Fenichel Geometric singular perturbation theory for ordinary differential equations , 1979 .

[2]  J. Rinzel,et al.  Numerical calculation of stable and unstable periodic solutions to the Hodgkin-Huxley equations , 1980 .

[3]  G. Sell,et al.  The Hopf Bifurcation and Its Applications , 1976 .

[4]  M. Krupa,et al.  Local analysis near a folded saddle-node singularity , 2010 .

[5]  Boris Hasselblatt,et al.  Handbook of Dynamical Systems , 2010 .

[6]  S. Levin Lectu re Notes in Biomathematics , 1983 .

[7]  R. FitzHugh Thresholds and Plateaus in the Hodgkin-Huxley Nerve Equations , 1960, The Journal of general physiology.

[8]  David Terman,et al.  Mathematical foundations of neuroscience , 2010 .

[9]  J. A. Kuznecov Elements of applied bifurcation theory , 1998 .

[10]  P. Szmolyan,et al.  Canards in R3 , 2001 .

[11]  Thomas F. Fairgrieve,et al.  AUTO 2000 : CONTINUATION AND BIFURCATION SOFTWARE FOR ORDINARY DIFFERENTIAL EQUATIONS (with HomCont) , 1997 .

[12]  James Sneyd,et al.  Dynamical Probing of the Mechanisms Underlying Calcium Oscillations , 2006, J. Nonlinear Sci..

[13]  S. Yoshizawa,et al.  An Active Pulse Transmission Line Simulating Nerve Axon , 1962, Proceedings of the IRE.

[14]  J. Rinzel On repetitive activity in nerve. , 1978, Federation proceedings.

[15]  Vivien Kirk,et al.  Multiple Timescales, Mixed Mode Oscillations and Canards in Models of Intracellular Calcium Dynamics , 2011, J. Nonlinear Sci..

[16]  S. Baer,et al.  Sungular hopf bifurcation to relaxation oscillations , 1986 .

[17]  Peter Szmolyan,et al.  Extending Geometric Singular Perturbation Theory to Nonhyperbolic Points - Fold and Canard Points in Two Dimensions , 2001, SIAM J. Math. Anal..

[18]  M. Wechselberger À propos de canards (Apropos canards) , 2012 .

[19]  J. Rubin,et al.  The selection of mixed-mode oscillations in a Hodgkin-Huxley model with multiple timescales. , 2008, Chaos.

[20]  H. Osinga,et al.  Understanding anomalous delays in a model of intracellular calcium dynamics. , 2010, Chaos.

[21]  B. Braaksma,et al.  Singular Hopf Bifurcation in Systems with Fast and Slow Variables , 1998 .

[22]  P. J. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[23]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[24]  Eugene M. Izhikevich,et al.  Subcritical Elliptic Bursting of Bautin Type , 1999, SIAM J. Appl. Math..

[25]  M. Krupa,et al.  Relaxation Oscillation and Canard Explosion , 2001 .

[26]  Yuri A. Kuznetsov,et al.  Andronov-Hopf bifurcation , 2006, Scholarpedia.

[27]  A. Atri,et al.  A single-pool model for intracellular calcium oscillations and waves in the Xenopus laevis oocyte. , 1993, Biophysical journal.

[28]  R. FitzHugh Impulses and Physiological States in Theoretical Models of Nerve Membrane. , 1961, Biophysical journal.

[29]  John Guckenheimer,et al.  Mixed-Mode Oscillations with Multiple Time Scales , 2012, SIAM Rev..

[30]  Christopher Jones,et al.  Geometric singular perturbation theory , 1995 .

[31]  H. Othmer Nonlinear Oscillations in Biology and Chemistry , 1986 .

[32]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[33]  Jonathan E. Rubin,et al.  Giant squid-hidden canard: the 3D geometry of the Hodgkin–Huxley model , 2007, Biological Cybernetics.

[34]  P. Szmolyana,et al.  Relaxation oscillations in R 3 , 2004 .

[35]  John Guckenheimer,et al.  Chaos in the Hodgkin-Huxley Model , 2002, SIAM J. Appl. Dyn. Syst..

[36]  Peter Szmolyan,et al.  Relaxation oscillations in R3 , 2004 .

[37]  J. Rinzel Excitation dynamics: insights from simplified membrane models. , 1985, Federation proceedings.

[38]  J. Keizer,et al.  Minimal model for membrane oscillations in the pancreatic beta-cell. , 1983, Biophysical journal.

[39]  John Guckenheimer,et al.  Singular Hopf Bifurcation in Systems with Two Slow Variables , 2008, SIAM J. Appl. Dyn. Syst..

[40]  John Guckenheimer,et al.  The singular limit of a Hopf bifurcation , 2012 .

[41]  Martin Wechselberger,et al.  Existence and Bifurcation of Canards in ℝ3 in the Case of a Folded Node , 2005, SIAM J. Appl. Dyn. Syst..

[42]  James P. Keener,et al.  Mathematical physiology , 1998 .