Changes in the criticality of Hopf bifurcations due to certain model reduction techniques in systems with multiple timescales
暂无分享,去创建一个
Vivien Kirk | Martin Wechselberger | James Sneyd | M. Wechselberger | V. Kirk | J. Sneyd | Wenjun Zhang | Wenjun Zhang
[1] Neil Fenichel. Geometric singular perturbation theory for ordinary differential equations , 1979 .
[2] J. Rinzel,et al. Numerical calculation of stable and unstable periodic solutions to the Hodgkin-Huxley equations , 1980 .
[3] G. Sell,et al. The Hopf Bifurcation and Its Applications , 1976 .
[4] M. Krupa,et al. Local analysis near a folded saddle-node singularity , 2010 .
[5] Boris Hasselblatt,et al. Handbook of Dynamical Systems , 2010 .
[6] S. Levin. Lectu re Notes in Biomathematics , 1983 .
[7] R. FitzHugh. Thresholds and Plateaus in the Hodgkin-Huxley Nerve Equations , 1960, The Journal of general physiology.
[8] David Terman,et al. Mathematical foundations of neuroscience , 2010 .
[9] J. A. Kuznecov. Elements of applied bifurcation theory , 1998 .
[10] P. Szmolyan,et al. Canards in R3 , 2001 .
[11] Thomas F. Fairgrieve,et al. AUTO 2000 : CONTINUATION AND BIFURCATION SOFTWARE FOR ORDINARY DIFFERENTIAL EQUATIONS (with HomCont) , 1997 .
[12] James Sneyd,et al. Dynamical Probing of the Mechanisms Underlying Calcium Oscillations , 2006, J. Nonlinear Sci..
[13] S. Yoshizawa,et al. An Active Pulse Transmission Line Simulating Nerve Axon , 1962, Proceedings of the IRE.
[14] J. Rinzel. On repetitive activity in nerve. , 1978, Federation proceedings.
[15] Vivien Kirk,et al. Multiple Timescales, Mixed Mode Oscillations and Canards in Models of Intracellular Calcium Dynamics , 2011, J. Nonlinear Sci..
[16] S. Baer,et al. Sungular hopf bifurcation to relaxation oscillations , 1986 .
[17] Peter Szmolyan,et al. Extending Geometric Singular Perturbation Theory to Nonhyperbolic Points - Fold and Canard Points in Two Dimensions , 2001, SIAM J. Math. Anal..
[18] M. Wechselberger. À propos de canards (Apropos canards) , 2012 .
[19] J. Rubin,et al. The selection of mixed-mode oscillations in a Hodgkin-Huxley model with multiple timescales. , 2008, Chaos.
[20] H. Osinga,et al. Understanding anomalous delays in a model of intracellular calcium dynamics. , 2010, Chaos.
[21] B. Braaksma,et al. Singular Hopf Bifurcation in Systems with Fast and Slow Variables , 1998 .
[22] P. J. Holmes,et al. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.
[23] A. Hodgkin,et al. A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.
[24] Eugene M. Izhikevich,et al. Subcritical Elliptic Bursting of Bautin Type , 1999, SIAM J. Appl. Math..
[25] M. Krupa,et al. Relaxation Oscillation and Canard Explosion , 2001 .
[26] Yuri A. Kuznetsov,et al. Andronov-Hopf bifurcation , 2006, Scholarpedia.
[27] A. Atri,et al. A single-pool model for intracellular calcium oscillations and waves in the Xenopus laevis oocyte. , 1993, Biophysical journal.
[28] R. FitzHugh. Impulses and Physiological States in Theoretical Models of Nerve Membrane. , 1961, Biophysical journal.
[29] John Guckenheimer,et al. Mixed-Mode Oscillations with Multiple Time Scales , 2012, SIAM Rev..
[30] Christopher Jones,et al. Geometric singular perturbation theory , 1995 .
[31] H. Othmer. Nonlinear Oscillations in Biology and Chemistry , 1986 .
[32] P. Holmes,et al. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.
[33] Jonathan E. Rubin,et al. Giant squid-hidden canard: the 3D geometry of the Hodgkin–Huxley model , 2007, Biological Cybernetics.
[34] P. Szmolyana,et al. Relaxation oscillations in R 3 , 2004 .
[35] John Guckenheimer,et al. Chaos in the Hodgkin-Huxley Model , 2002, SIAM J. Appl. Dyn. Syst..
[36] Peter Szmolyan,et al. Relaxation oscillations in R3 , 2004 .
[37] J. Rinzel. Excitation dynamics: insights from simplified membrane models. , 1985, Federation proceedings.
[38] J. Keizer,et al. Minimal model for membrane oscillations in the pancreatic beta-cell. , 1983, Biophysical journal.
[39] John Guckenheimer,et al. Singular Hopf Bifurcation in Systems with Two Slow Variables , 2008, SIAM J. Appl. Dyn. Syst..
[40] John Guckenheimer,et al. The singular limit of a Hopf bifurcation , 2012 .
[41] Martin Wechselberger,et al. Existence and Bifurcation of Canards in ℝ3 in the Case of a Folded Node , 2005, SIAM J. Appl. Dyn. Syst..
[42] James P. Keener,et al. Mathematical physiology , 1998 .