Algebraic Language Theory for Eilenberg-Moore Algebras

We develop an algebraic language theory based on the notion of an Eilenberg--Moore algebra. In comparison to previous such frameworks the main contribution is the support for algebras with infinitely many sorts and the connection to logic in form of so-called `definable algebras'.

[1]  Stefan Milius,et al.  Equational Axiomatization of Algebras with Structure , 2018, FoSSaCS.

[2]  Achim Blumensath,et al.  Regular Tree Algebras , 2018, Log. Methods Comput. Sci..

[3]  Mikolaj Bojanczyk,et al.  A non-regular language of infinite trees that is recognizable by a finite algebra , 2018, ArXiv.

[4]  Julian Salamanca,et al.  Unveiling Eilenberg-type Correspondences: Birkhoff's Theorem for (finite) Algebras + Duality , 2017, ArXiv.

[5]  Michal Skrzypczak,et al.  Regular Languages of Thin Trees , 2016, Theory of Computing Systems.

[6]  Jirí Adámek,et al.  Eilenberg Theorems for Free , 2016, MFCS.

[7]  Stefan Milius,et al.  Profinite Monads, Profinite Equations, and Reiterman's Theorem , 2015, FoSSaCS.

[8]  Mikolaj Bojanczyk,et al.  Recognisable Languages over Monads , 2015, DLT.

[9]  Emily Riehl,et al.  Categorical Homotopy Theory , 2014 .

[10]  Achim Blumensath,et al.  An algebraic proof of Rabin's Tree Theorem , 2013, Theor. Comput. Sci..

[11]  Achim Blumensath,et al.  Recognisability for algebras of infinite trees , 2011, Theor. Comput. Sci..

[12]  Mikolaj Bojanczyk,et al.  Algebra for Infinite Forests with an Application to the Temporal Logic EF , 2009, CONCUR.

[13]  Jean-Eric Pin,et al.  Infinite words - automata, semigroups, logic and games , 2004, Pure and applied mathematics series.

[14]  Jirí Adámek,et al.  On tree coalgebras and coalgebra presentations , 2004, Theor. Comput. Sci..

[15]  L. Staiger Languages , 1997, Practice and Procedure of the International Criminal Tribunal for the Former Yugoslavia.

[16]  Wolfgang Thomas,et al.  Languages, Automata, and Logic , 1997, Handbook of Formal Languages.

[17]  Sally Popkorn,et al.  A Handbook of Categorical Algebra , 2009 .

[18]  Jan Reiterman,et al.  The Birkhoff theorem for finite algebras , 1982 .

[19]  J. R. Büchi,et al.  Solving sequential conditions by finite-state strategies , 1969 .

[20]  Achim Blumensath,et al.  ω-Forest Algebras and Temporal Logics , 2021, MFCS.

[21]  Jon Barwise,et al.  Model-Theoretic Logics , 2016 .

[22]  I. Walukiewicz,et al.  Forest algebras , 2008, Logic and Automata.

[23]  R. Diaconescu Institution-independent model theory , 2008 .

[24]  H. Lenstra Profinite Groups , 2003 .

[25]  Andreas Potthoff,et al.  Logische Klassifizierung regulärer Baumsprachen , 1994 .

[26]  Y. Gurevich On Finite Model Theory , 1990 .