Heat Kernel Upper Bounds on Long Range Percolation Clusters

In this paper, we derive upper bounds for the heat kernel of the simple random walk on the infinite cluster of a supercritical long range percolation process. For any $d \geq 1$ and for any exponent $s \in (d, (d+2) \wedge 2d)$ giving the rate of decay of the percolation process, we show that the return probability decays like $t^{-\ffrac{d}{s-d}}$ up to logarithmic corrections, where $t$ denotes the time the walk is run. Moreover, our methods also yield generalized bounds on the spectral gap of the dynamics and on the diameter of the largest component in a box. Besides its intrinsic interest, the main result is needed for a companion paper studying the scaling limit of simple random walk on the infinite cluster.

[1]  David Gamarnik,et al.  The diameter of a long range percolation graph , 2002, SODA '02.

[2]  A. Grigor’yan,et al.  Pointwise Estimates for Transition Probabilities of Random Walks on Infinite Graphs , 2003 .

[3]  Michael Krivelevich,et al.  The isoperimetric constant of the random graph process , 2008, Random Struct. Algorithms.

[4]  S. Varadhan,et al.  Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions , 1986 .

[5]  É. Remy,et al.  Isoperimetry and heat kernel decay on percolation clusters , 2003, math/0301213.

[6]  P. Ferrari,et al.  An invariance principle for reversible Markov processes. Applications to random motions in random environments , 1989 .

[7]  J. Spouge Long-range percolation in one-dimension , 1984 .

[8]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[9]  Noam Berger,et al.  The diameter of long-range percolation clusters on finite cycles , 2001, Random Struct. Algorithms.

[10]  M. Biskup,et al.  Quenched invariance principle for simple random walk on percolation clusters , 2005, math/0503576.

[11]  L. Schulman,et al.  One dimensional 1/|j − i|S percolation models: The existence of a transition forS≦2 , 1986 .

[12]  H. Kesten,et al.  Uniqueness of the infinite cluster and continuity of connectivity functions for short and long range percolation , 1987 .

[13]  V. Sidoravicius,et al.  Quenched invariance principles for walks on clusters of percolation or among random conductances , 2004 .

[14]  Marek Biskup,et al.  Graph diameter in long‐range percolation , 2004, Random Struct. Algorithms.

[15]  M. Biskup On the scaling of the chemical distance in long-range percolation models , 2003, math/0304418.

[16]  Noam Berger,et al.  Long-Range Percolation Mixing Time , 2007, Combinatorics, Probability and Computing.

[17]  R. Burton,et al.  Density and uniqueness in percolation , 1989 .

[18]  Alistair Sinclair,et al.  Improved Bounds for Mixing Rates of Markov Chains and Multicommodity Flow , 1992, Combinatorics, Probability and Computing.

[19]  Sharon L. Milgram,et al.  The Small World Problem , 1967 .

[20]  Andrey L. Piatnitski,et al.  Quenched invariance principles for random walks on percolation clusters , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[21]  Pieter Trapman,et al.  The growth of the infinite long-range percolation cluster , 2009, 0901.0661.

[22]  Alistair Sinclair,et al.  Improved Bounds for Mixing Rates of Markov Chains and Multicommodity Flow , 1992, Combinatorics, Probability and Computing.

[23]  M. Barlow Random walks on supercritical percolation clusters , 2003, math/0302004.

[24]  Takashi Kumagai,et al.  Heat Kernel Estimates for Strongly Recurrent Random Walk on Random Media , 2008, 0806.4507.

[25]  Noam Berger,et al.  Transience, Recurrence and Critical Behavior¶for Long-Range Percolation , 2001 .