Effect of deposition temperature on the structural and electrical properties of laser-crystallized hydrogenated amorphous silicon films

The deposition temperature of hydrogenated amorphous silicon films deposited by dc glow discharge was found to affect the crystallinity, hydrogen content, and silicon–hydrogen bonding after laser crystallization of the film. This in turn affected the electrical properties of the crystallized film. The crystallinity of the film after laser annealing was always higher than that of the corresponding furnace‐crystallized films, for the same deposition temperature, and it increased with decreasing deposition temperature, similar to that observed in furnace crystallized films (650 °C, 30 h). However, the dark and photoconductivity, photoresponse (defined as the ratio of photo to dark conductivity), and the carrier diffusion length increased with increasing deposition temperature (150–350 °C). This was due to both an increase in hydrogen content and the SiH and SiH2 bonding, as shown by evolved gas analysis and infrared spectroscopy. Carrier transport measurements indicated that the dominant transport mechanism ...

[1]  M. Kimura,et al.  Strong 〈100〉 texture formation of polycrystalline silicon films on amorphous insulator by laser recrystallization , 1984 .

[2]  H. Schaber,et al.  Low resistance polycrystalline silicon by boron or arsenic implantation and thermal crystallization of amorphously deposited films , 1984 .

[3]  Krishna C. Saraswat,et al.  Structure and Stability of Low Pressure Chemically Vapor‐Deposited Silicon Films , 1978 .

[4]  M. Hirose,et al.  Electronic properties of chemically deposited polycrystalline silicon , 1979 .

[5]  D. Chung,et al.  Crystallization of Hydrogenated Amorphous Silicon Thick Films on Molybdenum Substrates , 1994 .

[6]  Toshiyuki Sameshima,et al.  XeCl Excimer Laser Annealing Used to Fabricate Poly-Si Tfts , 1986 .

[7]  D. Anderson,et al.  Properties of amorphous hydrogenated silicon, with special emphasis on preparation by sputtering , 1981 .

[8]  T. Kamins,et al.  Properties of Plasma‐Enhanced CVD Silicon Films I : Undoped Films Deposited from 525° to 725°C , 1982 .

[9]  T. Chu Silicon films on foreign substrates for solar cells , 1977 .

[10]  M. Kimura,et al.  Influence of as‐deposited film structure on 〈100〉 texture in laser‐recrystallized silicon on fused quartz , 1984 .

[11]  Keiji Tanaka,et al.  Effect of substrate temperature on recrystallization of plasma chemical vapor deposition amorphous silicon films , 1990 .

[12]  D. Staebler,et al.  Reversible conductivity changes in discharge‐produced amorphous Si , 1977 .

[13]  David S. Ginley,et al.  Passivation of grain boundaries in polycrystalline silicon , 1979 .

[14]  J. B. Boyce,et al.  Excimer‐laser‐induced crystallization of hydrogenated amorphous silicon , 1990 .

[15]  R. Reif,et al.  Solid phase epitaxial recrystallization of thin polysilicon films amorphized by silicon ion implantation , 1982 .

[16]  J. Seto The electrical properties of polycrystalline silicon films , 1975 .

[17]  D. Buchanan,et al.  Thin-film transistors incorporating a thin, high-quality PECVD SiO/sub 2/ gate dielectric , 1988, IEEE Electron Device Letters.

[18]  A. J. Harris,et al.  Laser annealing of glow discharge amorphous silicon , 1980 .

[19]  H. Shichijo,et al.  Characteristics and Three-Dimensional Integration of MOSFET's in Small-Grain LPCVD Polycrystalline Silicon , 1985, IEEE Journal of Solid-State Circuits.

[20]  J. Pankove,et al.  Laser annealing of hydrogenated amorphous silicon , 1980 .

[21]  K. Kavanagh,et al.  Cw laser crystallization of glow discharge a-Si:H on glass substrates , 1982 .

[22]  B. Cullity,et al.  Elements of X-ray diffraction , 1957 .

[23]  Yasuo Wada,et al.  Grain Growth Mechanism of Heavily Phosphorus‐Implanted Polycrystalline Silicon , 1978 .

[24]  Chuang‐Chuang Tsai,et al.  Hydrogen evolution and defect creation in amorphous Si: H alloys , 1979 .

[25]  Kenji Miyata,et al.  High performance low-temperature poly-Si n-channel TFTs for LCD , 1989 .

[26]  Richard H. Bube,et al.  Photoelectronic Properties of Semiconductors , 1992 .

[27]  D. Chung,et al.  Thermodynamics and kinetics of hydrogen evolution in hydrogenated amorphous silicon films , 1995 .

[28]  E. Fogarassy,et al.  Influence of hydrogen on the structure and surface morphology of pulsed ArF excimer laser crystallized amorphous silicon thin films , 1992 .

[29]  R. Reif,et al.  Low-temperature process to increase the grain size in polysilicon films , 1981 .

[30]  Henry I. Smith,et al.  Surface‐energy‐driven secondary grain growth in ultrathin (<100 nm) films of silicon , 1984 .

[31]  G. B. Anderson,et al.  Low temperature crystallization of amorphous silicon using an excimer laser , 1990 .

[32]  H. Okamoto,et al.  Electrical Properties of Laser-Annealed Glow-Discharge Amorphous Silicon Layers , 1980 .

[33]  H. Kuroda,et al.  Explosive Crystallization in Amorphous Silicon Induced by Picosecond High-Power Laser Pulses , 1985 .

[34]  C. W. White,et al.  Laser and Electron Beam Processing of Materials , 1980 .

[35]  D. Greve,et al.  High-performance thin-film transistors in low-temperature crystallized LPCVD amorphous silicon films , 1987, IEEE Electron Device Letters.

[36]  A. R. Moore Photoelectromagnetic effect in amorphous silicon , 1980 .