Solid-state time-of-flight range camera

The concept of a real-time range camera without moving parts is described, based on the time-of-flight (TOF) principle. It operates with modulated visible and near-infrared radiation, which is detected and demodulated simultaneously by a 2-D array of lock-in pixels employing the charge-coupled device principle. Each pixel individually measures the amplitude, offset and phase of the received radiation. The theoretical resolution limit of this TOF range camera is derived, which depends on the square root of the detected background radiation and the inverse of the modulation amplitude. Actual measurements of 3-D sequences acquired at 10 range images per second show excellent agreement between our theory and the observed results. A range resolution of a few centimeters over a range of 10 m, with an illumination power of a few hundreds of milliwatts is obtained in laboratory scenes for noncooperative, diffusely reflecting objects.