A Jacobi Gauss–Lobatto and Gauss–Radau collocation algorithm for solving fractional Fokker–Planck equations

In this article, we construct a new numerical approach for solving the time-fractional Fokker–Planck equation. The shifted Jacobi polynomials are used as basis functions, and the fractional derivative is described in the sense of Caputo. The proposed approach is a combination of shifted Jacobi Gauss–Lobatto scheme for the spatial discretization and the shifted Jacobi Gauss–Radau scheme for temporal approximation. The problem is then reduced to a problem consisting of a system of algebraic equations that greatly simplifies the problem. In addition, our numerical algorithm is also applied for solving the space-fractional Fokker–Planck equation and the time–space-fractional Fokker–Planck equation. Numerical results are consistent with the theoretical analysis, indicating the high accuracy and effectiveness of the proposed algorithm.

[1]  H. Risken The Fokker-Planck equation : methods of solution and applications , 1985 .

[2]  S. A. El-Wakil,et al.  Time-fractional KdV equation: formulation and solution using variational methods , 2009, 0905.3895.

[3]  Carla M. A. Pinto,et al.  Complex order van der Pol oscillator , 2011 .

[4]  D. Benson,et al.  The fractional‐order governing equation of Lévy Motion , 2000 .

[5]  J. Kirchner,et al.  Fractal stream chemistry and its implications for contaminant transport in catchments , 2000, Nature.

[6]  W. Ames Mathematics in Science and Engineering , 1999 .

[7]  Hongze Leng,et al.  Couple of the Variational Iteration Method and Fractional-Order Legendre Functions Method for Fractional Differential Equations , 2014, TheScientificWorldJournal.

[8]  C. W. Clenshaw,et al.  The special functions and their approximations , 1972 .

[9]  Chengming Huang,et al.  Spectral collocation method for linear fractional integro-differential equations , 2014 .

[10]  D. Benson,et al.  Application of a fractional advection‐dispersion equation , 2000 .

[11]  M. Zaky,et al.  Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation , 2014, Nonlinear Dynamics.

[12]  Yao-Lin Jiang,et al.  Waveform relaxation methods for fractional differential equations with the Caputo derivatives , 2013, J. Comput. Appl. Math..

[13]  Yuriy Povstenko,et al.  Signaling problem for time-fractional diffusion-wave equation in a half-space in the case of angular symmetry , 2010 .

[14]  Stefan Samko,et al.  Fractional integration and differentiation of variable order: an overview , 2012, Nonlinear Dynamics.

[15]  Ali H. Bhrawy,et al.  A fully spectral collocation approximation for multi-dimensional fractional Schrödinger equations , 2015, J. Comput. Phys..

[16]  Shaher Momani,et al.  Numerical solution of Fokker–Planck equation with space- and time-fractional derivatives , 2007 .

[17]  Cécile Piret,et al.  A radial basis functions method for fractional diffusion equations , 2013, J. Comput. Phys..

[18]  Yingjun Jiang A new analysis of stability and convergence for finite difference schemes solving the time fractional Fokker–Planck equation , 2015 .

[19]  Hong Wang,et al.  Fast alternating-direction finite difference methods for three-dimensional space-fractional diffusion equations , 2014, J. Comput. Phys..

[20]  J. Klafter,et al.  The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics , 2004 .

[21]  Weihua Deng,et al.  Numerical algorithm for the time fractional Fokker-Planck equation , 2007, J. Comput. Phys..

[22]  E. H. Doha,et al.  A NEW JACOBI OPERATIONAL MATRIX: AN APPLICATION FOR SOLVING FRACTIONAL DIFFERENTIAL EQUATIONS , 2012 .

[23]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[24]  Ahmet Yildirim,et al.  Analytical approach to Fokker–Planck equation with space- and time-fractional derivatives by means of the homotopy perturbation method , 2010 .

[25]  A. H. Bhrawy,et al.  An efficient Jacobi pseudospectral approximation for nonlinear complex generalized Zakharov system , 2014, Appl. Math. Comput..

[26]  N. Ford,et al.  A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations , 2013 .

[27]  Saudi Arabia,et al.  NEW NUMERICAL APPROXIMATIONS FOR SPACE-TIME FRACTIONAL BURGERS' EQUATIONS VIA A LEGENDRE SPECTRAL-COLLOCATION METHOD , 2014 .

[28]  Weihua Deng,et al.  Finite difference/predictor-corrector approximations for the space and time fractional Fokker-Planck equation , 2012, Appl. Math. Lett..

[29]  R. Magin Fractional Calculus in Bioengineering , 2006 .

[30]  R. Haydock,et al.  Vector continued fractions using a generalized inverse , 2003, math-ph/0310041.

[31]  Ali H. Bhrawy,et al.  A review of operational matrices and spectral techniques for fractional calculus , 2015 .

[32]  Jan S. Hesthaven,et al.  Stable multi-domain spectral penalty methods for fractional partial differential equations , 2014, J. Comput. Phys..

[33]  Yu-xin Zhang [3, 3] Padé approximation method for solving space fractional Fokker-Planck equations , 2014, Appl. Math. Lett..

[34]  Eid H. Doha,et al.  Jacobi-Gauss-Lobatto collocation method for the numerical solution of l+l nonlinear Schrödinger equations , 2014, J. Comput. Phys..

[35]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[36]  T. A. Zang,et al.  Spectral Methods: Fundamentals in Single Domains , 2010 .

[37]  I. Podlubny Fractional differential equations , 1998 .

[38]  Weihua Deng,et al.  Finite Element Method for the Space and Time Fractional Fokker-Planck Equation , 2008, SIAM J. Numer. Anal..

[39]  Linzhang Lu,et al.  Implicit numerical approximation scheme for the fractional Fokker-Planck equation , 2010, Appl. Math. Comput..

[40]  A. Aminataei,et al.  A numerical algorithm for the space and time fractional Fokker‐Planck equation , 2012 .

[41]  Lifeng Wang,et al.  Haar wavelet method for solving fractional partial differential equations numerically , 2014, Appl. Math. Comput..

[42]  E. H. Doha,et al.  A numerical technique based on the shifted Legendre polynomials for solving the time-fractional coupled KdV equations , 2016 .

[43]  Changpin Li,et al.  A numerical approach to the generalized nonlinear fractional Fokker-Planck equation , 2012, Comput. Math. Appl..

[44]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[45]  A. Bhrawy,et al.  A new formula for fractional integrals of Chebyshev polynomials: Application for solving multi-term fractional differential equations , 2013 .

[46]  Zhiqiang Zhou,et al.  Convergence analysis of moving finite element methods for space fractional differential equations , 2014, J. Comput. Appl. Math..

[47]  Ali H. Bhrawy,et al.  A method based on the Jacobi tau approximation for solving multi-term time-space fractional partial differential equations , 2015, J. Comput. Phys..

[48]  Mehdi Dehghan,et al.  Application of the collocation method for solving nonlinear fractional integro-differential equations , 2014, J. Comput. Appl. Math..

[49]  Fawang Liu,et al.  A characteristic difference method for the variable-order fractional advection-diffusion equation , 2013 .

[50]  I. S. Jesus,et al.  Fractional control of heat diffusion systems , 2008 .

[51]  Zhibo Wang,et al.  A high order compact finite difference scheme for time fractional Fokker-Planck equations , 2015, Appl. Math. Lett..

[52]  Richard T. Baillie,et al.  Long memory processes and fractional integration in econometrics , 1996 .

[53]  Fawang Liu,et al.  Finite difference approximations for the fractional Fokker–Planck equation , 2009 .

[54]  R. Hilfer Applications Of Fractional Calculus In Physics , 2000 .

[55]  José António Tenreiro Machado,et al.  Fractional Order Calculus: Basic Concepts and Engineering Applications , 2010 .

[56]  Delfim F. M. Torres,et al.  Fractional conservation laws in optimal control theory , 2007, 0711.0609.