Triplet state spectroscopy of σ-conjugated poly[methyl(phenyl)silylene]

[1]  S. Nespurek,et al.  Electroactive Polysilanes: Metastability of Electronic States in Poly[methyl(phenyl)silylene] , 2006 .

[2]  J. Sworakowski,et al.  Quantum-chemical insight into the design of molecular optoelectrical switch , 2005 .

[3]  Yu. A. Skryshevskiĭ Phosphorescence of Poly(Methylphenyl)Silane Films , 2004 .

[4]  S. Nespurek,et al.  Polysilylenes: charge carrier transport and photogeneration , 2003 .

[5]  J. Sworakowski,et al.  Charge carrier transport on molecular wire controlled by dipolar species: towards light-driven molecular switch , 2003 .

[6]  H. Bässler,et al.  Sensitized intrinsic phosphorescence from a poly(phenylene-vinylene) derivative , 2003 .

[7]  S. Nespurek,et al.  Nondispersive polaron transport in disordered organic solids , 2003 .

[8]  Hugh D. Burrows,et al.  Triplet state dynamics on isolated conjugated polymer chains , 2002 .

[9]  A. Monkman,et al.  Singlet and triplet energy transfer in a benzil-doped, light emitting, solid-state conjugated polymer , 2002 .

[10]  H. Bässler,et al.  Delayed fluorescence of a poly (p-phenylenevinylene) derivative: Triplet–triplet annihilation versus geminate pair recombination , 2002 .

[11]  K. Yoshino,et al.  Origin of broad visible luminescence in poly[methyl(phenyl)silylene] thin films , 2002 .

[12]  S. Tagawa,et al.  Hole Conduction along Molecular Wires: σ‐Bonded Silicon Versus π‐Bond‐Conjugated Carbon , 2002 .

[13]  R. Needs,et al.  Excitons in small hydrogenated Si clusters , 2001 .

[14]  S. Nespurek,et al.  Charge carrier transport in poly[methyl(phenyl)silylene]: the effect of additives , 2001 .

[15]  Y. Haga,et al.  Photovoltaic Characteristics of Phthalocyanine-Polysilane Composite Films. , 2001 .

[16]  L. J. Hartwell,et al.  Triplet energies of pi-conjugated polymers. , 2001, Physical review letters.

[17]  Charles E. Swenberg,et al.  Electronic Processes in Organic Crystals and Polymers , 1999 .

[18]  S. Nespurek Thin polysilylene films. Their electronic and photoelectrical properties , 1999 .

[19]  A. Monkman,et al.  Measurement of the S0–T1 energy gap in poly(2-methoxy,5-(2′-ethyl-hexoxy)–p-phenylenevinylene) by triplet–triplet energy transfer , 1999 .

[20]  S. Toyoda,et al.  Near-ultraviolet electroluminescence from polysilanes , 1998 .

[21]  Paul M. Borsenberger,et al.  Organic photoreceptors for xerography , 1998 .

[22]  Niyasi Serdar Sariciftci,et al.  Primary Photoexcitations In Conjugated Polymers: Molecular Exciton Versus Semiconductor Band Model , 1997 .

[23]  Tachibana,et al.  Nature of one-dimensional excitons in polysilanes. , 1996, Physical review. B, Condensed matter.

[24]  K. Yoshino,et al.  Electroluminescent Diodes Utilizing Polysilanes , 1996 .

[25]  D. Haarer,et al.  Electroluminescence from multilayer organic light‐emitting diodes using poly(methylphenylsilane) as hole transporting material , 1995 .

[26]  Suzuki,et al.  Visible photoluminescence from silicon-backbone polymers. , 1995, Physical review. B, Condensed matter.

[27]  Tachibana,et al.  Electric-field-induced second-harmonic generation mediated by one-dimensional excitons in polysilanes. , 1994, Physical review. B, Condensed matter.

[28]  W. E. Moerner,et al.  Poly(silane)-based high-mobility photorefractive polymers , 1993 .

[29]  K. Sakamoto,et al.  Phosphorescence from the delocalized triplet state of polysilylenes , 1993 .

[30]  M. Fujiki Structural defects in poly(methylphenylsilylene) , 1992 .

[31]  Abe,et al.  Singlet and triplet excitons in conjugated polymers. , 1992, Physical review. B, Condensed matter.

[32]  J. M. Zeigler,et al.  Poly(di‐n‐hexyl‐silane) in solid solutions: Experimental and theoretical studies of electronic excitations of a disordered linear chain , 1992 .

[33]  M. Möller,et al.  Radiation-induced conductivity in poly(methylphenylsilylene) and poly(di-n-hexylsilylene) studied by time-resolved microwave conductivity , 1992 .

[34]  Kepler,et al.  Electronic excitations of poly(methylphenylsilane) films. , 1991, Physical review. B, Condensed matter.

[35]  W. Wilson,et al.  Excited-state dynamics of one- and two-dimensional .sigma.-conjugated silicon frame polymers: dramatic effects of branching in a series of hexylsilyne-branched poly(hexylmethylsilylene) copolymers , 1991 .

[36]  A. Elschner,et al.  Site-selective fluorescence studies on polysilylenes , 1991 .

[37]  D. K. Chakraborty,et al.  Binding energies of triplet excimers in poly(N-vinylcarbazole) solid films from laser-based kinetic spectroscopy between 15 and 55 K , 1990 .

[38]  M. Abkowitz,et al.  Electronic transport in silicon backbone polymers , 1990 .

[39]  J. Michl,et al.  Polysilane high polymers , 1989 .

[40]  O. Ito,et al.  Picosecond laser spectroscopy of poly(methylphenylsilylene). Confirmation of previous assignment of the broad band , 1989 .

[41]  K. Takeda,et al.  The photoluminescence of poly(methylphenylsilylene): the origin of the long-wavelength broad band , 1989 .

[42]  Takeda,et al.  Electronic structure of Si-skeleton materials. , 1989, Physical review. B, Condensed matter.

[43]  K. Wagener,et al.  Evolution of structure and properties in fiber formation from a thermoplastic polyester‐polyether segmented copolymer , 1987 .

[44]  H. Bässler,et al.  Picosecond study of singlet exciton dynamics in polyvinylcarbazole (PVK) in the temperature range 5–300 K , 1985 .

[45]  M. Washio,et al.  Picosecond time-resolved fluorescence studies of poly(N-vinylcarbazole) using a pulse-radiolysis technique , 1979 .

[46]  Alan J. Heeger,et al.  Solitons in polyacetylene , 1979 .

[47]  S. McGlynn,et al.  Molecular Spectroscopy of the Triplet State. , 1969 .