Statistical Comparison of Algorithm Performance Through Instance Selection
暂无分享,去创建一个
Holger H. Hoos | Laurent Simon | Nathanaël Fijalkow | Marie Anastacio | Théo Matricon | H. Hoos | Laurent Simon | Nathanaël Fijalkow | Marie Anastacio | Théo Matricon
[1] David J. Groggel,et al. Practical Nonparametric Statistics , 2000, Technometrics.
[2] Kevin Leyton-Brown,et al. Algorithm runtime prediction: Methods & evaluation , 2012, Artif. Intell..
[3] Luca Pulina,et al. The 2016 and 2017 QBF solvers evaluations (QBFEVAL'16 and QBFEVAL'17) , 2019, Artif. Intell..
[4] Andrew W. Moore,et al. The Racing Algorithm: Model Selection for Lazy Learners , 1997, Artificial Intelligence Review.
[5] Heike Trautmann,et al. Automated Algorithm Selection: Survey and Perspectives , 2018, Evolutionary Computation.
[6] Kevin Leyton-Brown,et al. Sequential Model-Based Optimization for General Algorithm Configuration , 2011, LION.
[7] Barry O'Sullivan,et al. Statistical Regimes and Runtime Prediction , 2015, IJCAI.
[8] Charles L. Lawson,et al. Solving least squares problems , 1976, Classics in applied mathematics.
[9] J. Pratt. Remarks on Zeros and Ties in the Wilcoxon Signed Rank Procedures , 1959 .
[10] Peter J. Stuckey,et al. The MiniZinc Challenge 2008-2013 , 2014, AI Mag..
[11] Leslie Pérez Cáceres,et al. The irace package: Iterated racing for automatic algorithm configuration , 2016 .
[12] Bernd Bischl,et al. ASlib: A benchmark library for algorithm selection , 2015, Artif. Intell..
[13] G. J. Hahn,et al. A Simple Method for Regression Analysis With Censored Data , 1979 .
[14] Bilal Syed Hussain,et al. Discriminating Instance Generation for Automated Constraint Model Selection , 2014, CP.
[15] Brandon M. Malone,et al. Empirical hardness of finding optimal Bayesian network structures: algorithm selection and runtime prediction , 2017, Machine Learning.
[16] Holger H. Hoos,et al. Automated Algorithm Configuration and Parameter Tuning , 2012, Autonomous Search.
[17] Xizhao Wang,et al. A survey on active learning strategy , 2010, 2010 International Conference on Machine Learning and Cybernetics.
[18] Jakob Bossek,et al. Generating instances with performance differences for more than just two algorithms , 2021, GECCO Companion.
[19] Bart Selman,et al. Heavy-Tailed Phenomena in Satisfiability and Constraint Satisfaction Problems , 2000, Journal of Automated Reasoning.
[20] Thomas Stützle,et al. A Racing Algorithm for Configuring Metaheuristics , 2002, GECCO.
[21] Marijn J. H. Heule,et al. SAT Competition 2018 , 2019, J. Satisf. Boolean Model. Comput..
[22] Mauro Birattari,et al. Tuning Metaheuristics - A Machine Learning Perspective , 2009, Studies in Computational Intelligence.
[23] S. Siegel,et al. Nonparametric Statistics for the Behavioral Sciences , 2022, The SAGE Encyclopedia of Research Design.
[24] Hilary Putnam,et al. A Computing Procedure for Quantification Theory , 1960, JACM.
[25] Lars Kotthoff,et al. Open Algorithm Selection Challenge 2017: Setup and Scenarios , 2017, OASC.
[26] Kevin Leyton-Brown,et al. Bayesian Optimization With Censored Response Data , 2013, ArXiv.
[27] Kevin Leyton-Brown,et al. SATzilla: Portfolio-based Algorithm Selection for SAT , 2008, J. Artif. Intell. Res..
[28] Marijn J. H. Heule,et al. Proceedings of SAT Competition 2017: Solver and Benchmark Descriptions , 2017 .