Landslide susceptibility mapping using maximum entropy (MaxEnt) and geographically weighted logistic regression (GWLR) models in the Río Aguas catchment (Almería, SE Spain)

[1]  D. Juretic The Maximum Entropy Production , 2021, Bioenergetics A Bridge across Life and Universe.

[2]  Yan Liu,et al.  Performance evaluation for four GIS-based models purposed to predict and map landslide susceptibility: A case study at a World Heritage site in Southwest China , 2019, CATENA.

[3]  Andrés Camilo Florez García,et al.  Técnicas para la predicción espacial de zonas susceptibles a deslizamientos , 2019, Avances: Investigación en Ingeniería.

[4]  A. B. Hart,et al.  Landslide susceptibility mapping: a practitioner’s view , 2019, Bulletin of Engineering Geology and the Environment.

[5]  A. Kerekes,et al.  Landslide susceptibility assessment using the maximum entropy model in a sector of the Cluj–Napoca Municipality, Romania , 2018, Revista de Geomorfologie.

[6]  Vijendra Kumar Pandey,et al.  Landslide susceptibility mapping using maximum entropy and support vector machine models along the highway corridor, Garhwal Himalaya , 2018, Geocarto International.

[7]  P. Reichenbach,et al.  A review of statistically-based landslide susceptibility models , 2018 .

[8]  Wei Chen,et al.  Landslide spatial modeling: Introducing new ensembles of ANN, MaxEnt, and SVM machine learning techniques , 2017 .

[9]  A. Kornejady,et al.  Landslide susceptibility assessment using maximum entropy model with two different data sampling methods , 2017 .

[10]  M. Stokes,et al.  The application of geomorphic indices in terrain analysis for ground engineering practice , 2017 .

[11]  E. Rotigliano,et al.  Exploiting Maximum Entropy method and ASTER data for assessing debris flow and debris slide susceptibility for the Giampilieri catchment (north‐eastern Sicily, Italy) , 2016 .

[12]  Seyed Amir Naghibi,et al.  GIS-based landslide spatial modeling in Ganzhou City, China , 2016, Arabian Journal of Geosciences.

[13]  G. Fubelli,et al.  Presence-only approach to assess landslide triggering-thickness susceptibility: a test for the Mili catchment (north-eastern Sicily, Italy) , 2015, Natural Hazards.

[14]  B. Pradhan,et al.  Spatial prediction of landslide hazard at the Yihuang area (China) using two-class kernel logistic regression, alternating decision tree and support vector machines , 2015 .

[15]  Alexander Brenning,et al.  Evaluating machine learning and statistical prediction techniques for landslide susceptibility modeling , 2015, Comput. Geosci..

[16]  Michael Bock,et al.  System for Automated Geoscientific Analyses (SAGA) v. 2.1.4 , 2015 .

[17]  Jerry Davis,et al.  A Hybrid Physical and Maximum-Entropy Landslide Susceptibility Model , 2015, Entropy.

[18]  Deo Raj Gurung,et al.  Abe Barek landslide and landslide susceptibility assessment in Badakhshan Province, Afghanistan , 2015, Landslides.

[19]  Dong Kun Lee,et al.  Evaluating landslide hazards using RCP 4.5 and 8.5 scenarios , 2015, Environmental Earth Sciences.

[20]  N. Park Using maximum entropy modeling for landslide susceptibility mapping with multiple geoenvironmental data sets , 2015, Environmental Earth Sciences.

[21]  M. Olsen PREDICTIVE SEISMICALLY-INDUCED LANDSLIDE HAZARD MAPPING IN OREGON USING A MAXIMUM ENTROPY MODEL (MAXENT) , 2014 .

[22]  Nicholas A Alexander,et al.  NCEE 2014 - 10th U.S. National Conference on Earthquake Engineering: Frontiers of Earthquake Engineering , 2014 .

[23]  Matthew J. Smith,et al.  Protected areas network is not adequate to protect a critically endangered East Africa Chelonian: Modelling distribution of pancake tortoise, Malacochersus tornieri under current and future climates , 2013, bioRxiv.

[24]  Filippo Catani,et al.  Detecting fingerprints of landslide drivers: A MaxEnt model , 2013 .

[25]  F. Agterberg,et al.  Integration of Geological Datasets for Gold Exploration in Nova Scotia , 2013 .

[26]  D. Warton,et al.  Equivalence of MAXENT and Poisson Point Process Models for Species Distribution Modeling in Ecology , 2013, Biometrics.

[27]  B. Pradhan,et al.  Landslide susceptibility mapping at Vaz Watershed (Iran) using an artificial neural network model: a comparison between multilayer perceptron (MLP) and radial basic function (RBF) algorithms , 2013, Arabian Journal of Geosciences.

[28]  Á. Felicísimo,et al.  Mapping landslide susceptibility with logistic regression, multiple adaptive regression splines, classification and regression trees, and maximum entropy methods: a comparative study , 2013, Landslides.

[29]  B. Pradhan,et al.  Remote Sensing Data Derived Parameters and its Use in Landslide Susceptibility Assessment Using Shannon’s Entropy and GIS , 2012 .

[30]  B. Pradhan,et al.  Landslide susceptibility mapping using index of entropy and conditional probability models in GIS: Safarood Basin, Iran , 2012 .

[31]  Boris Schröder,et al.  How can statistical models help to determine driving factors of landslides , 2012 .

[32]  Cristiano Ballabio,et al.  Support Vector Machines for Landslide Susceptibility Mapping: The Staffora River Basin Case Study, Italy , 2012, Mathematical Geosciences.

[33]  Farrokh Nadim,et al.  Statistical modelling of Europe-wide landslide susceptibility using limited landslide inventory data , 2012, Landslides.

[34]  Christian Conoscenti,et al.  Exporting a Google Earth™ aided earth-flow susceptibility model: a test in central Sicily , 2012, Natural Hazards.

[35]  C. Irigaray,et al.  Landslide-susceptibility mapping in a semi-arid mountain environment: an example from the southern slopes of Sierra Nevada (Granada, Spain) , 2011 .

[36]  Fausto Guzzetti,et al.  Geographical Information Systems in Assessing Natural Hazards , 2010 .

[37]  A. Stewart Fotheringham,et al.  Geographically Weighted Regression: A Method for Exploring Spatial Nonstationarity , 2010 .

[38]  I. Yilmaz Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: conditional probability, logistic regression, artificial neural networks, and support vector machine , 2010 .

[39]  J. Galindo‐Zaldívar,et al.  A new tectonic discontinuity in the Betic Cordillera deduced from active tectonics and seismicity in the Tabernas Basin , 2010 .

[40]  Piotr Jankowski,et al.  An optimized solution of multi-criteria evaluation analysis of landslide susceptibility using fuzzy sets and Kalman filter , 2010, Comput. Geosci..

[41]  Biswajeet Pradhan,et al.  Landslide susceptibility assessment and factor effect analysis: backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling , 2010, Environ. Model. Softw..

[42]  Yadvinder Malhi,et al.  Maximum entropy production in environmental and ecological systems , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[43]  S. L. Kuriakose,et al.  Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview , 2008 .

[44]  W. Z. Savage,et al.  Guidelines for landslide susceptibility, hazard and risk zoning for land-use planning , 2008 .

[45]  Edward A. Keller,et al.  Assessment of relative active tectonics, southwest border of the Sierra Nevada (southern Spain) , 2008 .

[46]  C. J. Westen,et al.  Qualitative landslide susceptibility assessment by multicriteria analysis: A case study from San Antonio del Sur, Guantánamo, Cuba , 2008 .

[47]  Juan Remondo,et al.  Quantitative landslide risk assessment and mapping on the basis of recent occurrences , 2008 .

[48]  M. Matteucci,et al.  Artificial neural networks and cluster analysis in landslide susceptibility zonation , 2008 .

[49]  James S. Griffiths,et al.  Engineering geomorphological input to ground models: an approach based on Earth systems , 2008, Quarterly Journal of Engineering Geology and Hydrogeology.

[50]  R. Weijermars,et al.  Uplift history of a Betic fold nappe inferred from Neogene-Quaternary sedimentation and tectonics (in the Sierra Alhamilla and Almeria, Sorbas and Tabernas Basins of the Betic Cordilleras, SE Spain) , 2007 .

[51]  T. Fernández,et al.  Evaluation and validation of landslide-susceptibility maps obtained by a GIS matrix method: examples from the Betic Cordillera (southern Spain) , 2007 .

[52]  Mark New,et al.  Ensemble forecasting of species distributions. , 2007, Trends in ecology & evolution.

[53]  J. Chacón,et al.  Engineering geology maps: landslides and geographical information systems , 2006 .

[54]  Robert P. Anderson,et al.  Maximum entropy modeling of species geographic distributions , 2006 .

[55]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[56]  P. Reichenbach,et al.  Probabilistic landslide hazard assessment at the basin scale , 2005 .

[57]  A. Mather,et al.  Assessment of some spatial and temporal issues in landslide initiation within the Río Aguas Catchment, South–East Spain , 2005 .

[58]  S. Black,et al.  U-series isochron dating of immature and mature calcretes as a basis for constructing Quaternary landform chronologies for the Sorbas basin, southeast Spain , 2005, Quaternary Research.

[59]  Saro Lee,et al.  Determination and application of the weights for landslide susceptibility mapping using an artificial neural network , 2004 .

[60]  A. Hart LANDSLIDE INVESTIGATION IN THE RÍO AGUAS CATCHMENT, SOUTHEAST SPAIN , 2004 .

[61]  T. Fernández,et al.  Methodology for Landslide Susceptibility Mapping by Means of a GIS. Application to the Contraviesa Area (Granada, Spain) , 2003 .

[62]  A. Mather,et al.  Quaternary landscape evolution: a framework for understanding contemporary erosion, southeast Spain , 2002 .

[63]  James S. Griffiths,et al.  Landslide susceptibility in the Río Aguas catchment, SE Spain , 2002, Quarterly Journal of Engineering Geology and Hydrogeology.

[64]  A. Harvey,et al.  Quantification of river-capture-induced base-level changes and landscape development, Sorbas Basin, SE Spain , 2002, Geological Society, London, Special Publications.

[65]  J. Corominas,et al.  Assessment of shallow landslide susceptibility by means of multivariate statistical techniques , 2001 .

[66]  A. Mather Adjustment of a drainage network to capture induced base-level change: an example from the Sorbas Basin, SE Spain , 2000 .

[67]  C. J. Westen The Modelling Of Landslide Hazards Using Gis , 2000 .

[68]  R. Soeters,et al.  Digital geomorphological landslide hazard mapping of the Alpago area, Italy , 2000 .

[69]  P. Reichenbach,et al.  Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy , 1999 .

[70]  P. Aleotti,et al.  Landslide hazard assessment: summary review and new perspectives , 1999 .

[71]  Clemente Irigaray Fernández,et al.  Verification of landslide susceptibility mapping: a case study , 1999 .

[72]  Martin Charlton,et al.  Two techniques for exploring non-stationarity in geographical data , 1997 .

[73]  E. F. Bueno Unidades de diagnóstico para la evaluación de la peligrosidad geomorfológica en el valle del Andarax (prov. de Almería) , 1997 .

[74]  M. J. Esteban‐Parra,et al.  Spatial and temporal patterns of precipitation in Spain for the period 1880–1992 , 1998 .

[75]  Martin Charlton,et al.  The Geography of Parameter Space: An Investigation of Spatial Non-Stationarity , 1996, Int. J. Geogr. Inf. Sci..

[76]  C. Dabrio,et al.  Oscilaciones eustáticas de alta frecuencia en el Neógeno superior de Sorbas (Almería, sureste de España). , 1995 .

[77]  Cristina Baeza Adell Evaluación de las condiciones de rotura y la movilidad de los deslizamientos superficiales mediante el uso de técnicas de anáisis multivariante , 1994 .

[78]  J. M. Martín,et al.  Messinian events in the Sorbas Basin in southeastern Spain and their implications in the recent history of the Mediterranean , 1994 .

[79]  E. E. Brabb,et al.  The world landslide problem , 1991 .

[80]  J A Swets,et al.  Measuring the accuracy of diagnostic systems. , 1988, Science.

[81]  A. Harvey,et al.  Response of Quaternary fluvial systems to differential epeirogenic uplift: Aguas and Feos river systems, southeast Spain , 1987 .

[82]  J. H. Schuenemeyer,et al.  Statistical Methods For Geographers , 1986 .

[83]  E. E. Brabb Innovative approaches to landslide hazard and risk mapping , 1985 .

[84]  Alberto Carrara,et al.  Multivariate models for landslide hazard evaluation , 1983 .

[85]  E. Jaynes On the rationale of maximum-entropy methods , 1982, Proceedings of the IEEE.

[86]  Jerome V. DeGraff,et al.  Regional Landslide—Susceptibility Assessment for Wildland Management: A Matrix Approach , 2020, Thresholds in Geomorphology.

[87]  C. Metz Basic principles of ROC analysis. , 1978, Seminars in nuclear medicine.

[88]  P. C. Stevenson An empirical method for the evaluation of relative landslip risk , 1977 .

[89]  W. Tobler A Computer Movie Simulating Urban Growth in the Detroit Region , 1970 .

[90]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .