A Subspace Minimization Method for the Trust-Region Step

We consider methods for large-scale unconstrained minimization based on finding an approximate minimizer of a quadratic function subject to a two-norm trust-region constraint. The Steihaug-Toint method uses the conjugate-gradient method to minimize the quadratic over a sequence of expanding subspaces until the iterates either converge to an interior point or cross the constraint boundary. However, if the conjugate-gradient method is used with a preconditioner, the Steihaug-Toint method requires that the trust-region norm be defined in terms of the preconditioning matrix. If a different preconditioner is used for each subproblem, the shape of the trust-region can change substantially from one subproblem to the next, which invalidates many of the assumptions on which standard methods for adjusting the trust-region radius are based. In this paper we propose a method that allows the trust-region norm to be defined independently of the preconditioner. The method solves the inequality constrained trust-region subproblem over a sequence of evolving low-dimensional subspaces. Each subspace includes an accelerator direction defined by a regularized Newton method for satisfying the optimality conditions of a primal-dual interior method. A crucial property of this direction is that it can be computed by applying the preconditioned conjugate-gradient method to a positive-definite system in both the primal and dual variables of the trust-region subproblem. Numerical experiments on problems from the CUTEr test collection indicate that the method can require significantly fewer function evaluations than other methods. In addition, experiments with general-purpose preconditioners show that it is possible to significantly reduce the number of matrix-vector products relative to those required without preconditioning.

[1]  T. Steihaug The Conjugate Gradient Method and Trust Regions in Large Scale Optimization , 1983 .

[2]  Nicholas I. M. Gould,et al.  CUTE: constrained and unconstrained testing environment , 1995, TOMS.

[3]  Philip E. Gill,et al.  Iterative Methods for Finding a Trust-region Step , 2009, SIAM J. Optim..

[4]  S. Nash Newton-Type Minimization via the Lanczos Method , 1984 .

[5]  Anders Forsgren,et al.  Interior Methods for Nonlinear Optimization , 2002, SIAM Rev..

[6]  Chih-Jen Lin,et al.  Incomplete Cholesky Factorizations with Limited Memory , 1999, SIAM J. Sci. Comput..

[7]  Nicholas I. M. Gould,et al.  CUTEr and SifDec: A constrained and unconstrained testing environment, revisited , 2003, TOMS.

[8]  Anders Forsgren,et al.  Iterative Solution of Augmented Systems Arising in Interior Methods , 2007, SIAM J. Optim..

[9]  Danny C. Sorensen,et al.  A New Matrix-Free Algorithm for the Large-Scale Trust-Region Subproblem , 2000, SIAM J. Optim..

[10]  Philippe L. Toint,et al.  Towards an efficient sparsity exploiting newton method for minimization , 1981 .

[11]  William W. Hager,et al.  Global convergence of SSM for minimizing a quadratic over a sphere , 2004, Math. Comput..

[12]  Jennifer B. Erway,et al.  AN INTERIOR-POINT SUBSPACE MINIMIZATION METHOD FOR THE TRUST-REGION STEP , 2009 .

[13]  Nicholas I. M. Gould,et al.  Solving the Trust-Region Subproblem using the Lanczos Method , 1999, SIAM J. Optim..

[14]  M. Saunders,et al.  Solution of Sparse Indefinite Systems of Linear Equations , 1975 .

[15]  J. J. Moré,et al.  Newton's Method , 1982 .

[16]  採編典藏組 Society for Industrial and Applied Mathematics(SIAM) , 2008 .

[17]  David M. author-Gay Computing Optimal Locally Constrained Steps , 1981 .

[18]  William W. Hager,et al.  Minimizing a Quadratic Over a Sphere , 2001, SIAM J. Optim..

[19]  Jorge J. Moré,et al.  Computing a Trust Region Step , 1983 .

[20]  P. Gill,et al.  Combination trust-region line-search methods for unconstrained optimization , 1999 .

[21]  Nicholas I. M. Gould,et al.  Trust Region Methods , 2000, MOS-SIAM Series on Optimization.

[22]  D. Sorensen Newton's method with a model trust region modification , 1982 .

[23]  Danny C. Sorensen,et al.  A Trust-Region Approach to the Regularization of Large-Scale Discrete Forms of Ill-Posed Problems , 2001, SIAM J. Sci. Comput..

[24]  E. Michael Gertz,et al.  A quasi-Newton trust-region method , 2004, Math. Program..

[25]  Nicholas I. M. Gould,et al.  Constraint Preconditioning for Indefinite Linear Systems , 2000, SIAM J. Matrix Anal. Appl..

[26]  Danny C. Sorensen,et al.  Minimization of a Large-Scale Quadratic FunctionSubject to a Spherical Constraint , 1997, SIAM J. Optim..

[27]  Todd Munson,et al.  Benchmarking optimization software with COPS. , 2001 .

[28]  Franz Rendl,et al.  A semidefinite framework for trust region subproblems with applications to large scale minimization , 1997, Math. Program..

[29]  Ya-Xiang Yuan,et al.  On the truncated conjugate gradient method , 2000, Math. Program..