Deformation simulation using cubic finite elements and efficient p-multigrid methods

We present a novel p-multigrid method for efficient simulation of corotational elasticity with higher-order finite elements. In contrast to other multigrid methods proposed for volumetric deformation, the resolution hierarchy is realized by varying polynomial degrees on a tetrahedral mesh. The multigrid approach can be either used as a direct method or as a preconditioner for a conjugate gradient algorithm. We demonstrate the efficiency of our approach and compare it to commonly used direct sparse solvers and preconditioned conjugate gradient methods. As the polynomial representation is defined w.r.t. the same mesh, the update of the matrix hierarchy necessary for corotational elasticity can be computed efficiently. We introduce the use of cubic finite elements for volumetric deformation and investigate different combinations of polynomial degrees for the hierarchy. We analyze the applicability of cubic finite elements for deformation simulation by comparing analytical results in a static and dynamic scenario and demonstrate our algorithm in dynamic simulations with quadratic and cubic elements. Applying our method to quadratic and cubic finite elements results in a speed-up of up to a factor of 7 for solving the linear system. Graphical abstractDisplay Omitted HighlightsA novel multigrid solver for volumetric deformation with higher order finite elements.Dynamic deformation simulations with cubic finite elements in B-form.Efficient transformation of polynomial representations of different degrees.A speed-up of up to a factor of 7 for linear systems for higher order simulations.

[1]  Elaine Cohen,et al.  Animation of Deformable Bodies with Quadratic Bézier Finite Elements , 2014, ACM Trans. Graph..

[2]  Taku Komura,et al.  Relationship descriptors for interactive motion adaptation , 2013, SCA '13.

[3]  Wolfgang Straßer,et al.  Interactive physically-based shape editing , 2008, SPM '08.

[4]  James F. O'Brien,et al.  Fast simulation of mass-spring systems , 2013, ACM Trans. Graph..

[5]  P. Schröder,et al.  A simple geometric model for elastic deformations , 2010, SIGGRAPH 2010.

[6]  S. McCormick,et al.  A multigrid tutorial (2nd ed.) , 2000 .

[7]  Jernej Barbic,et al.  FEM simulation of 3D deformable solids: a practitioner's guide to theory, discretization and model reduction , 2012, SIGGRAPH '12.

[8]  Keenan Crane,et al.  Energy-preserving integrators for fluid animation , 2009, SIGGRAPH 2009.

[9]  Jérémie Allard,et al.  Implicit FEM Solver on GPU for Interactive Deformation Simulation , 2011 .

[10]  Markus H. Gross,et al.  Interactive Virtual Materials , 2004, Graphics Interface.

[11]  J. Z. Zhu,et al.  The finite element method , 1977 .

[12]  William L. Briggs,et al.  A multigrid tutorial, Second Edition , 2000 .

[13]  Wolfgang Straßer,et al.  Interactive Soft Object Simulation with Quadratic Finite Elements , 2006, AMDO.

[14]  Yohan Payan,et al.  Efficient, Physically Plausible Finite Elements , 2005, Eurographics.

[15]  Michael Goesele,et al.  Interactive deformable models with quadratic bases in Bernstein–Bézier-form , 2011, The Visual Computer.

[16]  Ronald Fedkiw,et al.  Invertible finite elements for robust simulation of large deformation , 2004, SCA '04.

[17]  Andrew P. Witkin,et al.  Large steps in cloth simulation , 1998, SIGGRAPH.

[18]  DOMINIK L. MICHELS,et al.  Exponential integrators for stiff elastodynamic problems , 2014, ACM Trans. Graph..

[19]  James F. O'Brien,et al.  Real-time deformation and fracture in a game environment , 2009, SCA '09.

[20]  David A. Forsyth,et al.  Generalizing motion edits with Gaussian processes , 2009, ACM Trans. Graph..

[21]  Rüdiger Westermann,et al.  Workshop on Virtual Reality Interaction and Physical Simulation (2005) a Multigrid Framework for Real-time Simulation of Deformable Volumes , 2022 .

[22]  Miguel A. Otaduy,et al.  Position-based Methods for the Simulation of Solid Objects in Computer Graphics , 2013, Eurographics.

[23]  Hans-Peter Seidel,et al.  MovieReshape: tracking and reshaping of humans in videos , 2010, SIGGRAPH 2010.

[24]  Wojciech Matusik,et al.  Boxelization: folding 3D objects into boxes , 2014, ACM Trans. Graph..

[25]  Alexey Stomakhin,et al.  Energetically consistent invertible elasticity , 2012, SCA '12.

[26]  J. Xu,et al.  An Algebraic Multigrid Method for Higher-order Finite Element Discretizations , 2006, Computing.

[27]  G. Farin Curves and Surfaces for Cagd: A Practical Guide , 2001 .

[28]  Eftychios Sifakis,et al.  An efficient multigrid method for the simulation of high-resolution elastic solids , 2010, TOGS.

[29]  M. Gross,et al.  Flexible simulation of deformable models using discontinuous Galerkin FEM , 2008, SCA 2008.

[30]  Andrew Nealen,et al.  Physically Based Deformable Models in Computer Graphics , 2006, Comput. Graph. Forum.

[31]  Rüdiger Westermann,et al.  A Hexahedral Multigrid Approach for Simulating Cuts in Deformable Objects , 2011, IEEE Transactions on Visualization and Computer Graphics.

[32]  Rüdiger Westermann,et al.  A real-time multigrid finite hexahedra method for elasticity simulation using CUDA , 2011, Simul. Model. Pract. Theory.

[33]  Jerrold E. Marsden,et al.  Geometric, variational integrators for computer animation , 2006, SCA '06.

[34]  James F. O'Brien,et al.  Graphical modeling and animation of ductile fracture , 2002, SIGGRAPH '02.

[35]  Rüdiger Westermann,et al.  Corotated Finite Elements Made Fast and Stable , 2008, VRIPHYS.

[36]  Jan Bender,et al.  Efficient GPU Data Structures and Methods to Solve Sparse Linear Systems in Dynamics Applications , 2013, Comput. Graph. Forum.