Alternating Direction Method of Multipliers for a Class of Nonconvex and Nonsmooth Problems with Applications to Background/Foreground Extraction

In this paper, we study a general optimization model, which covers a large class of existing models for many applications in imaging sciences. To solve the resulting possibly nonconvex, nonsmooth and non-Lipschitz optimization problem, we adapt the alternating direction method of multipliers (ADMM) with a general dual step-size to solve a reformulation that contains three blocks of variables, and analyze its convergence. We show that for any dual step-size less than the golden ratio, there exists a computable threshold such that if the penalty parameter is chosen above such a threshold and the sequence thus generated by our ADMM is bounded, then the cluster point of the sequence gives a stationary point of the nonconvex optimization problem. We achieve this via a potential function specifically constructed for our ADMM. Moreover, we establish the global convergence of the whole sequence if, in addition, this special potential function is a Kurdyka-{\L}ojasiewicz function. Furthermore, we present a simple strategy for initializing the algorithm to guarantee boundedness of the sequence. Finally, we perform numerical experiments comparing our ADMM with the proximal alternating linearized minimization (PALM) proposed in [5] on the background/foreground extraction problem with real data. The numerical results show that our ADMM with a nontrivial dual step-size is efficient.

[1]  Bastian Goldlücke,et al.  Variational Analysis , 2014, Computer Vision, A Reference Guide.

[2]  Thierry Bouwmans,et al.  Traditional and recent approaches in background modeling for foreground detection: An overview , 2014, Comput. Sci. Rev..

[3]  John Wright,et al.  RASL: Robust Alignment by Sparse and Low-Rank Decomposition for Linearly Correlated Images , 2012, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  R. Glowinski,et al.  Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires , 1975 .

[5]  Zongben Xu,et al.  Convergence of multi-block Bregman ADMM for nonconvex composite problems , 2015, Science China Information Sciences.

[6]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[7]  Lei Zhang,et al.  Discriminative learning of iteration-wise priors for blind deconvolution , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[8]  Kim-Chuan Toh,et al.  A Convergent 3-Block SemiProximal Alternating Direction Method of Multipliers for Conic Programming with 4-Type Constraints , 2014, SIAM J. Optim..

[9]  Hédy Attouch,et al.  Proximal Alternating Minimization and Projection Methods for Nonconvex Problems: An Approach Based on the Kurdyka-Lojasiewicz Inequality , 2008, Math. Oper. Res..

[10]  Constantine Caramanis,et al.  Robust PCA via Outlier Pursuit , 2010, IEEE Transactions on Information Theory.

[11]  T. Wu,et al.  A Class of Linearized Proximal Alternating Direction Methods , 2011, J. Optim. Theory Appl..

[12]  J. Horowitz,et al.  Asymptotic properties of bridge estimators in sparse high-dimensional regression models , 2008, 0804.0693.

[13]  Mila Nikolova,et al.  Energy Minimization Methods , 2015, Handbook of Mathematical Methods in Imaging.

[14]  Jianqing Fan,et al.  COMMENTS ON « WAVELETS IN STATISTICS : A REVIEW , 2009 .

[15]  Lei Zhang,et al.  Weighted Nuclear Norm Minimization with Application to Image Denoising , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[16]  Dimitri P. Bertsekas,et al.  On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators , 1992, Math. Program..

[17]  Jorge J. Moré,et al.  Digital Object Identifier (DOI) 10.1007/s101070100263 , 2001 .

[18]  Daniel K Sodickson,et al.  Low‐rank plus sparse matrix decomposition for accelerated dynamic MRI with separation of background and dynamic components , 2015, Magnetic resonance in medicine.

[19]  Michael K. Ng,et al.  Median filtering‐based methods for static background extraction from surveillance video , 2015, Numer. Linear Algebra Appl..

[20]  Guoyin Li,et al.  Douglas–Rachford splitting for nonconvex optimization with application to nonconvex feasibility problems , 2014, Math. Program..

[21]  Qionghai Dai,et al.  Low-Rank Structure Learning via Nonconvex Heuristic Recovery , 2010, IEEE Transactions on Neural Networks and Learning Systems.

[22]  Thierry Bouwmans,et al.  Recent Advanced Statistical Background Modeling for Foreground Detection - A Systematic Survey , 2011 .

[23]  Jianhong Shen,et al.  Deblurring images: Matrices, spectra, and filtering , 2007, Math. Comput..

[24]  Donald Geman,et al.  Constrained Restoration and the Recovery of Discontinuities , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  Bingsheng He,et al.  Linearized Alternating Direction Method with Gaussian Back Substitution for Separable Convex Programming , 2011 .

[26]  Yong Yu,et al.  Robust Recovery of Subspace Structures by Low-Rank Representation , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Jianqing Fan,et al.  Comments on «Wavelets in statistics: A review» by A. Antoniadis , 1997 .

[28]  John Wright,et al.  RASL: Robust alignment by sparse and low-rank decomposition for linearly correlated images , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[29]  Hong-Kun Xu,et al.  Convergence of Bregman alternating direction method with multipliers for nonconvex composite problems , 2014, 1410.8625.

[30]  Zhixun Su,et al.  Linearized alternating direction method with parallel splitting and adaptive penalty for separable convex programs in machine learning , 2013, Machine Learning.

[31]  Su-In Lee,et al.  Node-based learning of multiple Gaussian graphical models , 2013, J. Mach. Learn. Res..

[32]  Zhi-Quan Luo,et al.  Convergence analysis of alternating direction method of multipliers for a family of nonconvex problems , 2014, 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[33]  Jianqing Fan,et al.  Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .

[34]  Soon Ki Jung,et al.  Decomposition into Low-rank plus Additive Matrices for Background/Foreground Separation: A Review for a Comparative Evaluation with a Large-Scale Dataset , 2015, Comput. Sci. Rev..

[35]  Stephen P. Boyd,et al.  Enhancing Sparsity by Reweighted ℓ1 Minimization , 2007, 0711.1612.

[36]  Mingyi Hong,et al.  Alternating direction method of multipliers for penalized zero-variance discriminant analysis , 2014, Computational Optimization and Applications.

[37]  Mila Nikolova,et al.  Efficient Reconstruction of Piecewise Constant Images Using Nonsmooth Nonconvex Minimization , 2008, SIAM J. Imaging Sci..

[38]  Qinghua Hu,et al.  Efficient Background Modeling Based on Sparse Representation and Outlier Iterative Removal , 2016, IEEE Transactions on Circuits and Systems for Video Technology.

[39]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[40]  Qi Tian,et al.  Statistical modeling of complex backgrounds for foreground object detection , 2004, IEEE Transactions on Image Processing.

[41]  Cun-Hui Zhang Nearly unbiased variable selection under minimax concave penalty , 2010, 1002.4734.

[42]  Wotao Yin,et al.  Global Convergence of ADMM in Nonconvex Nonsmooth Optimization , 2015, Journal of Scientific Computing.

[43]  Thierry Bouwmans,et al.  Robust PCA via Principal Component Pursuit: A review for a comparative evaluation in video surveillance , 2014, Comput. Vis. Image Underst..

[44]  Kim-Chuan Toh,et al.  A Convergent 3-Block Semi-Proximal ADMM for Convex Minimization Problems with One Strongly Convex Block , 2014, Asia Pac. J. Oper. Res..

[45]  Xiaojun Chen,et al.  Linearly Constrained Non-Lipschitz Optimization for Image Restoration , 2015, SIAM J. Imaging Sci..

[46]  Xiaojun Chen,et al.  Smoothing Nonlinear Conjugate Gradient Method for Image Restoration Using Nonsmooth Nonconvex Minimization , 2010, SIAM J. Imaging Sci..

[47]  Paul Tseng,et al.  Hankel Matrix Rank Minimization with Applications to System Identification and Realization , 2013, SIAM J. Matrix Anal. Appl..

[48]  Wenjiang J. Fu,et al.  Asymptotics for lasso-type estimators , 2000 .

[49]  Bingsheng He,et al.  The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent , 2014, Mathematical Programming.

[50]  Guoyin Li,et al.  Global Convergence of Splitting Methods for Nonconvex Composite Optimization , 2014, SIAM J. Optim..

[51]  Dianne P. O'Leary,et al.  Deblurring Images: Matrices, Spectra and Filtering , 2006, J. Electronic Imaging.

[52]  John N. Tsitsiklis,et al.  Parallel and distributed computation , 1989 .

[53]  B. Mercier,et al.  A dual algorithm for the solution of nonlinear variational problems via finite element approximation , 1976 .

[54]  Marc Teboulle,et al.  Proximal alternating linearized minimization for nonconvex and nonsmooth problems , 2013, Mathematical Programming.