Multiple positive solutions for Robin problem involving critical weighted Hardy–Sobolev exponents with boundary singularities

Abstract This paper deals with the existence of positive solutions for Robin elliptic problems involving critical weighted Hardy–Sobolev exponents with boundary singularities. Using the Caffarelli–Kohn–Nirenberg inequalities and variational methods, we prove the existence and multiplicity of positive solutions.

[1]  Chun-Lei Tang,et al.  Existence and multiplicity of solutions for semilinear elliptic equations with critical weighted Hardy–Sobolev exponents , 2009 .

[2]  Robert V. Kohn,et al.  First order interpolation inequalities with weights , 1984 .

[3]  Yinbin Deng,et al.  A Robin boundary problem with Hardy potential and critical nonlinearities , 2008 .

[4]  E. Berchio On the second solution to a critical growth Robin problem. , 2012 .

[5]  J. Chabrowski On a singular Neumann problem for semilinear elliptic equations with critical Sobolev exponent and lower order terms , 2007 .

[6]  Ji Wang,et al.  Existence of a nontrivial weak solution to quasilinear elliptic equations with singular weights and multiple critical exponents , 2010 .

[7]  Chun-Lei Tang,et al.  Positive solutions for Neumann elliptic problems involving critical Hardy–Sobolev exponent with boundary singularities , 2009 .

[8]  Winfried Kaballo Holomorphe Störungstheorie in lokalkonvexen Räumen , 1976 .

[9]  Nassif Ghoussoub,et al.  Hardy–Sobolev critical elliptic equations with boundary singularities , 2004 .

[10]  Dongsheng Kang,et al.  Positive solutions to the weighted critical quasilinear problems , 2009, Appl. Math. Comput..

[11]  Minbo Yang,et al.  The effect of domain topology on the number of positive solutions for singular elliptic problems involving the Caffarelli–Kohn–Nirenberg inequalities☆ , 2007 .

[12]  P. Rabinowitz,et al.  Dual variational methods in critical point theory and applications , 1973 .

[13]  Pigong Han,et al.  Positive solutions for elliptic equations involving critical Sobolev exponents and Hardy terms with Neumann boundary conditions , 2003 .

[14]  Zhiyang Liu Existence of the Positive Solutions for some Boundary Singularity Elliptic Equation with Critical Sobolev-Hardy Exponent , 2012 .

[15]  M. Bouchekif,et al.  On singular nonhomogeneous elliptic equations involving critical Caffarelli–Kohn–Nirenberg exponent , 2009 .

[16]  I. Ekeland On the variational principle , 1974 .

[17]  K. Chou,et al.  On the Best Constant for a Weighted Sobolev‐Hardy Inequality , 1993 .

[18]  Florin Catrina,et al.  On the Caffarelli-Kohn-Nirenberg inequalities: Sharp constants, existence (and nonexistence), and symmetry of extremal functions † , 2001 .

[19]  L. Ding,et al.  Positive solutions for critical quasilinear elliptic equations with mixed dirichlet-neumann boundary conditions , 2013 .

[20]  Xu-jia Wang Neumann problems of semilinear elliptic equations involving critical Sobolev exponents , 1991 .

[21]  G. Tarantello Multiplicity results for an inhomogeneous Neumann problem with critical exponent , 1993 .

[22]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[23]  Haim Brezis,et al.  Positive solutions of nonlinear elliptic equations involving critical sobolev exponents , 1983 .

[24]  Elliott H. Lieb,et al.  A Relation Between Pointwise Convergence of Functions and Convergence of Functionals , 1983 .