Ab initio energetics of LaBO3(001) (B=Mn, Fe, Co, and Ni) for solid oxide fuel cell cathodes

$\text{La}B{\text{O}}_{3}$ ($B=\text{Mn}$, Fe, Co, and Ni) perovskites form a family of materials of significant interest for cathodes of solid oxide fuel cells (SOFCs). In this paper ab initio methods are used to study both bulk and surface properties of relevance for SOFCs, including vacancy formation and oxygen binding energies. A thermodynamic approach and the density functional theory plus $U$ method are combined to obtain energies relevant for SOFC conditions ($T\ensuremath{\approx}800\text{ }\ifmmode^\circ\else\textdegree\fi{}\text{C}$, $P{\text{O}}_{2}\ensuremath{\approx}0.2\text{ }\text{atm}$). The impact of varying ${U}_{\text{eff}}$ $({U}_{\text{eff}}=U\ensuremath{-}J)$ on energy and electronic structure is explored in detail and it is shown that optimal ${U}_{\text{eff}}$ values yield significantly better agreement with experimental energies than ${U}_{\text{eff}}=0$ (which corresponds to the standard generalized gradient approximation). $\text{La}B{\text{O}}_{3}$ oxygen vacancy formation energies are predicted to be in the order $\text{Fe}g\text{Mn}g\text{Co}g\text{Ni}$ (where the largest implies most difficult to form a vacancy). It is shown that (001) $B{\text{O}}_{2}$ terminated surfaces have 1--2 eV lower vacancy formation energies and therefore far higher vacancy concentrations than the bulk. The stable surface species at low temperature are predicted to be the superoxide $\text{O}_{2}{}^{\ensuremath{-}}$ for $B=\text{Mn}$, Fe, Co and a peroxide $\text{O}_{2}{}^{2\ensuremath{-}}$ with a surface oxygen for $B=\text{Ni}$. Entropy effects are predicted to stabilize the monomer oxygen surface state for all $B$ cations at higher temperatures. Overall oxygen coverage of the (001) $B{\text{O}}_{2}$ surface is predicted to be quite low at SOFC operating conditions. These results will aid in understanding the oxygen reduction reaction on perovskite SOFC cathodes.

[1]  L. Curtiss,et al.  Gaussian‐1 theory: A general procedure for prediction of molecular energies , 1989 .

[2]  P. Coppens,et al.  Dependence of superexchange interaction on Fe3+O2−Fe3+ linkage angle☆ , 1965 .

[3]  R. Evarestov,et al.  Comparative density-functional LCAO and plane-wave calculations of LaMnO3 surfaces , 2005 .

[4]  R Loudon,et al.  Quantum Theory of the Solid State , 1977 .

[5]  H. Uchida,et al.  Catalytic activity of perovskite-type oxide catalysts for direct decomposition of NO: Correlation between cluster model calculations and temperature-programmed desorption experiments , 1998 .

[6]  E. Siebert,et al.  Investigation of chemisorbed oxygen, surface segregation and effect of post-treatments on La0.8Sr0.2MnO3 powder and screen-printed layers for solid oxide fuel cell cathodes , 2007 .

[7]  Konstantin M. Neyman,et al.  Understanding Ceria Nanoparticles from First-Principles Calculations , 2007 .

[8]  H. Inaba,et al.  Oxygen nonstoichiometry and defect equilibrium in the perovskite-type oxides La1−xSrxMnO3+d , 2000 .

[9]  J. Maier,et al.  Comparative study of polar perovskite surfaces , 2004 .

[10]  J. Goodenough,et al.  Sr‐ and Ni‐Doped LaCoO3 and LaFeO3 Perovskites New Cathode Materials for Solid‐Oxide Fuel Cells , 1998 .

[11]  Meilin Liu,et al.  Oxygen reduction on LaMnO3-Based cathode materials in solid oxide fuel cells , 2007 .

[12]  H. Anderson,et al.  Oxidation-reduction behavior of undoped and Sr-doped LaMnO3 nonstoichiometry and defect structure , 1989 .

[13]  J. Zaanen,et al.  Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators. , 1995, Physical review. B, Condensed matter.

[14]  P. M. Raccah,et al.  First-order localized-electron collective-electron transition in LaCoO3 , 1967 .

[15]  N. Yamazoe,et al.  OXYGEN-SORPTIVE PROPERTIES AND DEFECT STRUCTURE OF PEROVSKITE-TYPE OXIDES , 1984 .

[16]  V. Anisimov,et al.  Band theory and Mott insulators: Hubbard U instead of Stoner I. , 1991, Physical review. B, Condensed matter.

[17]  R. Evarestov,et al.  Periodic models in quantum chemical simulations of F centers in crystalline metal oxides , 2007 .

[18]  Matthias Scheffler,et al.  Density Functional Theory in Surface Science and Heterogeneous Catalysis , 2006 .

[19]  G. Herzberg,et al.  Molecular Spectra and Molecular Structure , 1992 .

[20]  H. Tagawa,et al.  Nonstoichiometry of the perovskite-type oxides La1−xSrxCoO3−δ , 1989 .

[21]  M. Imamura,et al.  Catalytically Active Oxygen Species in La1-xSrxCoO3-δ Studied by XPS and XAFS Spectroscopy , 2000 .

[22]  G. Herzberg,et al.  Molecular Spectra and Molecular Structure: I. Spectra of Diatomic Molecules , 1944 .

[23]  D. Duprez,et al.  Oxygen mobility in LaCoO3 perovskites , 2006 .

[24]  Gerbrand Ceder,et al.  Oxidation energies of transition metal oxides within the GGA+U framework , 2006 .

[25]  J. Goodenough,et al.  Paramagnetic phase in single-crystal LaMnO 3 , 1999 .

[26]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[27]  G. Henkelman,et al.  A fast and robust algorithm for Bader decomposition of charge density , 2006 .

[28]  Hamada,et al.  t2g versus all 3d localization in LaMO3 perovskites (M=Ti-Cu): First-principles study. , 1996, Physical review. B, Condensed matter.

[29]  R. Bader Atoms in molecules : a quantum theory , 1990 .

[30]  Y. Okimoto,et al.  Anisotropic optical spectra in a detwinned LaMnO 3 crystal , 2001 .

[31]  Stefano de Gironcoli,et al.  Linear response approach to the calculation of the effective interaction parameters in the LDA + U method , 2004, cond-mat/0405160.

[32]  S. Khalid,et al.  A study of transition metal K-edge x-ray absorption spectra of LaBO3 (B = Mn, Fe, Co, Ni), La2CuO4, and SrMnO3 using partial density of states , 2006, cond-mat/0612237.

[33]  Payne,et al.  Periodic boundary conditions in ab initio calculations. , 1995, Physical review. B, Condensed matter.

[34]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[35]  M. Rȩkas,et al.  Defect Chemistry of (La,Sr)MnO3 , 2005 .

[36]  A. F. Wells,et al.  Structural Inorganic Chemistry , 1971, Nature.

[37]  R. Evarestov,et al.  Atomistic modeling of polar LaMnO3 surfaces , 2004 .

[38]  M. A. Peña,et al.  Chemical structures and performance of perovskite oxides. , 2001, Chemical reviews.

[39]  T. Lorenz,et al.  Evidence for a low-spin to intermediate-spin state transition in LaCoO 3 , 2002, cond-mat/0205479.

[40]  J. Hafner,et al.  Ab initio study of the (0001) surfaces of hematite and chromia: Influence of strong electronic correlations , 2004 .

[41]  G. Sawatzky,et al.  Intermediate-spin state and properties of LaCoO3. , 1996, Physical review. B, Condensed matter.

[42]  J. Mizusaki,et al.  Nonstoichiometry and defect structure of the perovskite-type oxides La1−xSrxFeO3−° , 1985 .

[43]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[44]  G. Ceder,et al.  Towards more accurate First Principles prediction of redox potentials in transition-metal compounds with LDA+U , 2004, cond-mat/0406382.

[45]  N. Yamazoe,et al.  TPD AND XPS STUDY ON THERMAL BEHAVIOR OF ABSORBED OXYGEN IN La1−xSrxCoO3 , 1981 .

[46]  E. Heifets,et al.  Density functional simulation of the BaZrO3 (011) surface structure , 2007 .

[47]  H. Koinuma,et al.  A-site layer terminated perovskite substrate: NdGaO3 , 1999 .

[48]  K. Maiti,et al.  Investigation of the spin state of Co in La Co O 3 at room temperature: Ab initio calculations and high-resolution photoemission spectroscopy of single crystals , 2008 .

[49]  J. Rodríguez-Carvajal,et al.  Neutron-diffraction study of the Jahn-Teller transition in stoichiometric LaMnO 3 , 1998 .

[50]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[51]  B. Keimer,et al.  Spin-controlled Mott-Hubbard bands in LaMnO3 probed by optical ellipsometry. , 2004, Physical review letters.

[52]  Zhongqin Yang,et al.  Influence of parameters U and J in the LSDA+ U method on electronic structure of the perovskites La M O 3 ( M = C r , M n , F e , C o , N i ) , 1999 .

[53]  N. Hamada,et al.  Jahn-Teller distortion and magnetic structures in LaMnO{sub 3} , 1997 .

[54]  H. Brongersma,et al.  Silica poisoning of oxygen membranes , 2002 .

[55]  M. Finnis,et al.  SrTiO3 (001) (2x1) reconstructions: first-principles calculations of surface energy and atomic structure compared with scanning tunnelling microscopy images , 2004 .

[56]  A. Lichtenstein,et al.  First-principles calculations of electronic structure and spectra of strongly correlated systems: the LDA+U method , 1997 .

[57]  G. Ceder,et al.  First-principles investigation of the cooperative Jahn-Teller effect for octahedrally coordinated transition-metal ions , 2001 .

[58]  G. Pacchioni Modeling doped and defective oxides in catalysis with density functional theory methods: room for improvements. , 2008, The Journal of chemical physics.

[59]  Bouwmeester,et al.  Use of the Rigid Band Formalism to Interpret the Relationship between O Chemical Potential and Electron Concentration in La 1-xSrxCoO3- delta. , 1996, Physical review letters.

[60]  R. Carbonio,et al.  Crystal Structure Refinement and Stability of LaFexNi1−xO3Solid Solutions , 1997 .

[61]  S. Adler Factors governing oxygen reduction in solid oxide fuel cell cathodes. , 2004, Chemical reviews.

[62]  P. M. Raccah,et al.  Complex vs Band Formation in Perovskite Oxides , 1965 .

[63]  J. Maier,et al.  Adsorption of atomic and molecular oxygen on the LaMnO3(001) surface: ab initio supercell calculations and thermodynamics. , 2008, Physical chemistry chemical physics : PCCP.

[64]  Georg Kresse,et al.  Molecular adsorption on the surface of strongly correlated transition-metal oxides: A case study for CO/NiO(100) , 2004 .

[65]  V. L. Kozhevnikov,et al.  Band structure and the magnetic and elastic properties of SrFeO3 and LaFeO3 perovskites , 2005 .

[66]  Tokura,et al.  Variation of optical gaps in perovskite-type 3d transition-metal oxides. , 1993, Physical review. B, Condensed matter.

[67]  A. Navrotsky,et al.  Enthalpies of formation of LaMO_3 perovskites (M = Cr, Fe, Co, and Ni) , 2005 .

[68]  T. Jacob,et al.  Electronic structure and thermodynamic stability of LaMnO 3 and La 1-x Sr x MnO 3 (001) surfaces: Ab initio calculations , 2008 .

[69]  J. Nørskov,et al.  Universality in Heterogeneous Catalysis , 2002 .

[70]  N. Binggeli,et al.  Structural and electronic properties of LaMnO 3 under pressure: An ab initio LDA+U study , 2005 .

[71]  J. Maier,et al.  Atomic, electronic and thermodynamic properties of cubic and orthorhombic LaMnO3 surfaces , 2009 .

[72]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[73]  Scheffler,et al.  Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers on Al(111). , 1992, Physical review. B, Condensed matter.

[74]  J. Hafner,et al.  Molecular adsorption of NO on NiO(100): DFT and DFT + U calculations , 2005 .

[75]  Meilin Liu,et al.  Computational study on the catalytic mechanism of oxygen reduction on La(0.5)Sr(0.5)MnO(3) in solid oxide fuel cells. , 2007, Angewandte Chemie.

[76]  J. Goodenough,et al.  LaCoO{sub 3} revisited , 1995 .