BLIND SOURCE SEPARATION WITH RELATIVE NEWTON METHOD

We study a relative optimization framework for the quasimaximum likelihood blind source separation and relative Newton method as its particular instance. Convergence of the Newton method is stabilized by the line search and by the modification of the Hessian, which forces its positive definiteness. The structure of the Hessian allows fast approximate inversion. We demonstrate the efficiency of the presented approach on example of sparse sources. The nonlinearity in this case is based on smooth approximation of the absolute value function. Sequential optimization with the gradual reduction of the smoothing parameter leads to the super-efficient separation.

[1]  城所 良明,et al.  The Salk Institute for Biological Studies(話題) , 1975 .

[2]  Philip E. Gill,et al.  Practical optimization , 1981 .

[3]  J. Cardoso On the Performance of Orthogonal Source Separation Algorithms , 1994 .

[4]  Andrzej Cichocki,et al.  Robust learning algorithm for blind separation of signals , 1994 .

[5]  Terrence J. Sejnowski,et al.  An Information-Maximization Approach to Blind Separation and Blind Deconvolution , 1995, Neural Computation.

[6]  Andrzej Cichocki,et al.  A New Learning Algorithm for Blind Signal Separation , 1995, NIPS.

[7]  Jean-François Cardoso,et al.  Equivariant adaptive source separation , 1996, IEEE Trans. Signal Process..

[8]  David J. Field,et al.  Sparse coding with an overcomplete basis set: A strategy employed by V1? , 1997, Vision Research.

[9]  Philippe Garat,et al.  Blind separation of mixture of independent sources through a quasi-maximum likelihood approach , 1997, IEEE Trans. Signal Process..

[10]  T. Ens,et al.  Blind signal separation : statistical principles , 1998 .

[11]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[12]  Aapo Hyvärinen,et al.  Fast and robust fixed-point algorithms for independent component analysis , 1999, IEEE Trans. Neural Networks.

[13]  Bruno A. Olshausen,et al.  PROBABILISTIC FRAMEWORK FOR THE ADAPTATION AND COMPARISON OF IMAGE CODES , 1999 .

[14]  Jean-Franois Cardoso High-Order Contrasts for Independent Component Analysis , 1999, Neural Computation.

[15]  Barak A. Pearlmutter,et al.  Blind source separation by sparse decomposition , 2000, SPIE Defense + Commercial Sensing.

[16]  Noboru Murata,et al.  Multiplicative Nonholonomic/Newton -like Algorithm , 2000, ArXiv.

[17]  Dinh Tuan Pham,et al.  Joint Approximate Diagonalization of Positive Definite Hermitian Matrices , 2000, SIAM J. Matrix Anal. Appl..

[18]  Dinh-Tuan Pham,et al.  Blind separation of instantaneous mixtures of nonstationary sources , 2001, IEEE Trans. Signal Process..

[19]  Barak A. Pearlmutter,et al.  Blind Source Separation via Multinode Sparse Representation , 2001, NIPS.

[20]  Barak A. Pearlmutter,et al.  Blind Source Separation by Sparse Decomposition in a Signal Dictionary , 2001, Neural Computation.

[21]  Heinz Mathis,et al.  Joint diagonalization of correlation matrices by using gradient methods with application to blind signal separation , 2002, Sensor Array and Multichannel Signal Processing Workshop Proceedings, 2002.

[22]  M. Joho,et al.  Joint diagonalization of correlation matrices by using Newton methods with application to blind signal separation , 2002, Sensor Array and Multichannel Signal Processing Workshop Proceedings, 2002.