THE HUBBLE SPACE TELESCOPE CLUSTER SUPERNOVA SURVEY. V. IMPROVING THE DARK-ENERGY CONSTRAINTS ABOVE z > 1 AND BUILDING AN EARLY-TYPE-HOSTED SUPERNOVA SAMPLE

We present Advanced Camera for Surveys, NICMOS, and Keck adaptive-optics-assisted photometry of 20 Type Ia supernovae (SNe Ia) from the Hubble Space Telescope (HST) Cluster Supernova Survey. The SNe Ia were discovered over the redshift interval 0.623 < z < 1.415. Of these SNe Ia, 14 pass our strict selection cuts and are used in combination with the world's sample of SNe Ia to derive the best current constraints on dark energy. Of our new SNe Ia, 10 are beyond redshift z = 1, thereby nearly doubling the statistical weight of HST-discovered SNe Ia beyond this redshift. Our detailed analysis corrects for the recently identified correlation between SN Ia luminosity and host galaxy mass and corrects the NICMOS zero point at the count rates appropriate for very distant SNe Ia. Adding these SNe improves the best combined constraint on dark-energy density, ρDE(z), at redshifts 1.0 < z < 1.6 by 18% (including systematic errors). For a flat ΛCDM universe, we find ΩΛ = 0.729 ± 0.014 (68% confidence level (CL) including systematic errors). For a flat wCDM model, we measure a constant dark-energy equation-of-state parameter w = −1.013+0.068−0.073 (68% CL). Curvature is constrained to ∼0.7% in the owCDM model and to ∼2% in a model in which dark energy is allowed to vary with parameters w0 and wa. Further tightening the constraints on the time evolution of dark energy will require several improvements, including high-quality multi-passband photometry of a sample of several dozen z > 1 SNe Ia. We describe how such a sample could be efficiently obtained by targeting cluster fields with WFC3 on board HST. The updated supernova Union2.1 compilation of 580 SNe is available at http://supernova.lbl.gov/Union.

S. Deustua | A. S. Fruchter | K. Barbary | V. Fadeyev | M. Donahue | G. Aldering | D. J. Schlegel | H. K. Fakhouri | P. Ripoche | T. Morokuma | A. Gude | P. Rosati | C. Lidman | S. Perlmutter | A. Spadafora | M. Postman | M. Doi | M. Kowalski | N. Panagia | M. Brodwin | M. Strovink | E. V. Linder | S. A. Stanford | J. Rhodes | M. Wagner | H. Hoekstra | J. Rhodes | K. Dawson | D. Schlegel | A. Fruchter | M. Postman | M. Donahue | P. Rosati | T. Pritchard | M. Kowalski | N. Connolly | N. Yasuda | J. Meyers | D. Rubin | M. Brodwin | A. Goobar | G. Aldering | H. Fakhouri | S. Perlmutter | N. Suzuki | L. Wang | V. Fadeyev | K. Barbary | M. Doi | T. Morokuma | E. Hsiao | R. Amanullah | G. Aldering | S. Perlmutter | A. Dey | V. Stanishev | K. Konishi | N. Takanashi | K. Tokita | N. Yasuda | B. Koester | G. Goldhaber | S. Deustua | C. Lidman | N. Panagia | E. Linder | A. Gude | P. Ripoche | D. Johnston | A. Spadafora | T. Hattori | N. Kashikawa | S. Stanford | M. Strovink | C. Mullis | M. Gladders | E. Ellingson | A. Gonzalez | J. Melbourne | L. Lubin | H. Yee | A. Fruchter | L. Barrientos | D. Gilbank | Y. Ihara | A. Gude | A. Goobar | D. Stern | T. Hattori | H. Hoekstra | C. Lidman | M. D. Gladders | A. H. Gonzalez | A. Dey | M. J. Jee | D. Rubin | R. Amanullah | N. Connolly | G. Goldhaber | X. Huang | J. Meyers | V. Stanishev | N. Suzuki | T. Pritchard | L. F. Barrientos | N. Kashikawa | J. Botyánszki | Y. Ihara | E. Hsiao | J. Botyanszki | K. S. Dawson | P. Eisenhardt | E. Ellingson | L. Faccioli | D. G. Gilbank | D. Johnston | B. Koester | K. Konishi | L. Lubin | J. Melbourne | F. Munshi | C. Mullis | T. Oda | N. Takanashi | K. Tokita | M. Wagner | L. Wang | N. Yasuda | H.K.C. Yee | L. Faccioli | T. Oda | X. Huang | F. Munshi | D. Stern | S. Stanford | P. Eisenhardt | A. Gonzalez | Anthony H. Gonzalez | Benjamin P. Koester | F. Munshi | Takeshi Oda | D. Stern

[1]  K. Dawson,et al.  THE HUBBLE SPACE TELESCOPE CLUSTER SUPERNOVA SURVEY. VI. THE VOLUMETRIC TYPE Ia SUPERNOVA RATE , 2011, 1110.6442.

[2]  David W. Harris,et al.  SCALING RELATIONS AND OVERABUNDANCE OF MASSIVE CLUSTERS AT z ≳ 1 FROM WEAK-LENSING STUDIES WITH THE HUBBLE SPACE TELESCOPE , 2011, 1105.3186.

[3]  Stefano Casertano,et al.  A 3% SOLUTION: DETERMINATION OF THE HUBBLE CONSTANT WITH THE HUBBLE SPACE TELESCOPE AND WIDE FIELD CAMERA 3 , 2011, 1103.2976.

[4]  L. Moustakas,et al.  X-RAY EMISSION FROM TWO INFRARED-SELECTED GALAXY CLUSTERS AT z > 1.4 IN THE IRAC SHALLOW CLUSTER SURVEY , 2010, 1012.0581.

[5]  K. Onishi,et al.  THE HUBBLE SPACE TELESCOPE CLUSTER SUPERNOVA SURVEY. II. THE TYPE Ia SUPERNOVA RATE IN HIGH-REDSHIFT GALAXY CLUSTERS , 2011 .

[6]  B. Hsieh,et al.  THE RED-SEQUENCE CLUSTER SURVEY-2 (RCS-2): SURVEY DETAILS AND PHOTOMETRIC CATALOG CONSTRUCTION , 2010, 1012.3470.

[7]  H. Hoekstra,et al.  INTRACLUSTER SUPERNOVAE IN THE MULTI-EPOCH NEARBY CLUSTER SURVEY , 2010, 1011.1310.

[8]  M. Sullivan,et al.  The Supernova Legacy Survey 3-year sample: Type Ia supernovae photometric distances and cosmological constraints , , 2010, 1010.4743.

[9]  R. Chary,et al.  SPECTRAL ENERGY DISTRIBUTION OF z ≳ 1 TYPE Ia SUPERNOVA HOSTS IN GOODS: CONSTRAINTS ON EVOLUTIONARY DELAY AND THE INITIAL MASS FUNCTION , 2010, 1010.3315.

[10]  R. Bender,et al.  Cluster galaxies in XMMU J2235-2557: galaxy population properties in most massive environments at z ∼1.4 , 2010, 1009.1423.

[11]  John T. McGraw,et al.  Ground-based observatory operations optimized and enhanced by direct atmospheric measurements , 2010, Astronomical Telescopes + Instrumentation.

[12]  Steven W. Brown,et al.  Space-based photometric precision from ground-based telescopes , 2010, Astronomical Telescopes + Instrumentation.

[13]  Adam G. Riess,et al.  THE EFFECT OF HOST GALAXIES ON TYPE Ia SUPERNOVAE IN THE SDSS-II SUPERNOVA SURVEY , 2010, 1005.4687.

[14]  M. S. Burns,et al.  SPECTRA AND HUBBLE SPACE TELESCOPE LIGHT CURVES OF SIX TYPE Ia SUPERNOVAE AT 0.511 < z < 1.12 AND THE UNION2 COMPILATION , 2010, 1004.1711.

[15]  Mamoru Doi,et al.  PHOTOMETRIC RESPONSE FUNCTIONS OF THE SLOAN DIGITAL SKY SURVEY IMAGER , 2010, 1002.3701.

[16]  I. Hook,et al.  Subaru FOCAS Spectroscopic Observations of High-Redshift Supernovae , 2009, 0911.1258.

[17]  Alexander S. Szalay,et al.  Baryon Acoustic Oscillations in the Sloan Digital Sky Survey Data Release 7 Galaxy Sample , 2009, 0907.1660.

[18]  R. Kirshner,et al.  HUBBLE RESIDUALS OF NEARBY TYPE Ia SUPERNOVAE ARE CORRELATED WITH HOST GALAXY MASSES , 2009, 0912.0929.

[19]  K. Dawson,et al.  HUBBLE SPACE TELESCOPE DISCOVERY OF A z = 3.9 MULTIPLY IMAGED GALAXY BEHIND THE COMPLEX CLUSTER LENS WARPS J1415.1+36 AT z = 1.026 , 2009, 0911.0138.

[20]  Nicholas B. Suntzeff,et al.  THE CARNEGIE SUPERNOVA PROJECT: FIRST PHOTOMETRY DATA RELEASE OF LOW-REDSHIFT TYPE Ia SUPERNOVAE , 2009, 0910.3330.

[21]  M. Nonino,et al.  Multi-wavelength study of XMMU J2235.3-2557: the most massive galaxy cluster at z > 1 , 2009, 0910.1716.

[22]  J. Vanderplas,et al.  FIRST-YEAR SLOAN DIGITAL SKY SURVEY-II SUPERNOVA RESULTS: HUBBLE DIAGRAM AND COSMOLOGICAL PARAMETERS , 2009, 0908.4274.

[23]  M. Wagner,et al.  AN INTENSIVE HUBBLE SPACE TELESCOPE SURVEY FOR z>1 TYPE Ia SUPERNOVAE BY TARGETING GALAXY CLUSTERS , 2009, 0908.3928.

[24]  K. Dawson,et al.  HUBBLE SPACE TELESCOPE WEAK-LENSING STUDY OF THE GALAXY CLUSTER XMMU J2235.3 − 2557 AT z ∼ 1.4: A SURPRISINGLY MASSIVE GALAXY CLUSTER WHEN THE UNIVERSE IS ONE-THIRD OF ITS CURRENT AGE , 2009, 0908.3897.

[25]  K. Dawson,et al.  Multiwavelength observations of a rich galaxy cluster at z ~ 1 - the HST/ACS colour–magnitude diagram , 2009, 0903.3853.

[26]  Christopher J. Miller,et al.  THE XMM CLUSTER SURVEY: GALAXY MORPHOLOGIES AND THE COLOR–MAGNITUDE RELATION IN XMMXCS J2215.9 − 1738 AT z = 1.46 , 2009, 0903.1731.

[27]  Armin Rest,et al.  CfA3: 185 TYPE Ia SUPERNOVA LIGHT CURVES FROM THE CfA , 2009, 0901.4787.

[28]  Armin Rest,et al.  IMPROVED DARK ENERGY CONSTRAINTS FROM ∼100 NEW CfA SUPERNOVA TYPE Ia LIGHT CURVES , 2009, 0901.4804.

[29]  Christopher J. Miller,et al.  The XMM Cluster Survey: forecasting cosmological and cluster scaling-relation parameter constraints , 2008, 0802.4462.

[30]  Mamoru Doi,et al.  THE SLOAN DIGITAL SKY SURVEY-II: PHOTOMETRY AND SUPERNOVA IA LIGHT CURVES FROM THE 2005 DATA , 2008, 0908.4277.

[31]  K. Dawson,et al.  DISCOVERY OF AN UNUSUAL OPTICAL TRANSIENT WITH THE HUBBLE SPACE TELESCOPE , 2008, 0809.1648.

[32]  Ralph C. Bohlin,et al.  Improvements to Calnica , 2008 .

[33]  W. M. Wood-Vasey,et al.  Improved Cosmological Constraints from New, Old, and Combined Supernova Data Sets , 2008, 0804.4142.

[34]  S. Kay,et al.  Dark matter halo concentrations in the Wilkinson Microwave Anisotropy Probe year 5 cosmology , 2008, 0804.2486.

[35]  M. Halpern,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: LIKELIHOODS AND PARAMETERS FROM THE WMAP DATA , 2008, 0803.0586.

[36]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[37]  A. Riess,et al.  Bright Earth Persistence in NICMOS , 2008 .

[38]  I. Hook,et al.  Light curves of five type Ia supernovae at intermediate redshift , 2007, 0711.1375.

[39]  K. Dawson,et al.  A New Determination of the High-Redshift Type Ia Supernova Rates with the Hubble Space Telescope Advanced Camera for Surveys , 2007, 0710.3120.

[40]  M. Sirianni,et al.  Principal Component Analysis of the Time- and Position-dependent Point-Spread Function of the Advanced Camera for Surveys , 2007, 0710.5560.

[41]  R. Nichol,et al.  The XMM Cluster Survey: The Dynamical State of XMMXCS J2215.9–1738 at z = 1.457 , 2007, 0708.3258.

[42]  Christopher W. Stubbs,et al.  Toward More Precise Survey Photometry for PanSTARRS and LSST: Measuring Directly the Optical Transmission Spectrum of the Atmosphere , 2007, 0708.1364.

[43]  V. Laidler,et al.  Removing Post-SAA Persistence in NICMOS Data , 2007 .

[44]  M. Sullivan,et al.  K-Corrections and Spectral Templates of Type Ia Supernovae , 2007, astro-ph/0703529.

[45]  K. Dawson,et al.  Rest-Frame R-band Light Curve of a z ∼ 1.3 Supernova Obtained with Keck Laser Adaptive Optics , 2007, astro-ph/0703381.

[46]  M. Sullivan,et al.  SALT2: using distant supernovae to improve the use of type Ia supernovae as distance indicators , 2007, astro-ph/0701828.

[47]  N. B. Suntzeff,et al.  The ESSENCE Supernova Survey: Survey Optimization, Observations, and Supernova Photometry , 2007, astro-ph/0701043.

[48]  W. M. Wood-Vasey,et al.  Observational Constraints on the Nature of Dark Energy: First Cosmological Results from the ESSENCE Supernova Survey , 2007, astro-ph/0701041.

[49]  M. Sullivan,et al.  Photometric calibration of the Supernova Legacy Survey fields , 2006, astro-ph/0610397.

[50]  R. Bohlin PHOTOMETRIC CALIBRATION OF THE ACS , 2007 .

[51]  Ralph C. Bohlin Photometric Calibration of the ACS CCD Cameras , 2007 .

[52]  E. L. Wright,et al.  Clusters of Galaxies in the First Half of the Universe from the IRAC Shallow Survey , 2008, 0804.4798.

[53]  Stefano Casertano,et al.  New Hubble Space Telescope Discoveries of Type Ia Supernovae at z ≥ 1: Narrowing Constraints on the Early Behavior of Dark Energy , 2006, astro-ph/0611572.

[54]  J. Neill,et al.  The Rise Time of Type Ia Supernovae from the Supernova Legacy Survey , 2006, astro-ph/0607363.

[55]  S. Perlmutter,et al.  Improvements to the Image Processing of Hubble Space Telescope NICMOS Observations with Multiple Readouts , 2006 .

[56]  J. Neill,et al.  Rates and Properties of Type Ia Supernovae as a Function of Mass and Star Formation in Their Host Galaxies , 2006, astro-ph/0605455.

[57]  E. Copeland,et al.  Dynamics of dark energy , 2006, hep-th/0603057.

[58]  Adam G. Riess,et al.  NICMOS count-rate dependent nonlinearity tests using flatfield lamps , 2006 .

[59]  R. Bouwens,et al.  Evolution of the Color-Magnitude Relation in High-Redshift Clusters: Blue Early-Type Galaxies and Red Pairs in RDCS J0910+5422 , 2006, astro-ph/0601327.

[60]  Adam G. Riess,et al.  NICMOS Count Rate Dependent Non-Linearity in G096 and G141 , 2006 .

[61]  R. Bouwens,et al.  Galaxies at z ~ 6: The UV Luminosity Function and Luminosity Density from 506 HUDF, HUDF Parallel ACS Field, and GOODS i-Dropouts , 2005, astro-ph/0509641.

[62]  Adam G. Riess,et al.  A Test of Possible NICMOS Non-linearity , 2005 .

[63]  P. Astier,et al.  SALT : a spectral adaptive light curve template for type Ia supernovae , 2005, astro-ph/0506583.

[64]  A. Schwope,et al.  Galaxy cluster archaeology , 2005 .

[65]  Adam G. Riess,et al.  Grism Sensitivities and Apparent Non-Linearity , 2005 .

[66]  UCLA,et al.  Merging Galaxies in GOODS-S: First Extragalactic Results from Keck Laser Adaptive Optics , 2005, astro-ph/0504195.

[67]  C. Conselice,et al.  The Mass Assembly Histories of Galaxies of Various Morphologies in the GOODS Fields , 2005, astro-ph/0502204.

[68]  R. Bouwens,et al.  The Morphology-Density Relation in z ~ 1 Clusters , 2005, astro-ph/0501224.

[69]  R. Nichol,et al.  Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies , 2005, astro-ph/0501171.

[70]  F. Mannucci,et al.  The Supernova rate per unit mass , 2004, astro-ph/0411450.

[71]  Michael D. Gladders,et al.  The Red-Sequence Cluster Survey. I. The Survey and Cluster Catalogs for Patches RCS 0926+37 and RCS 1327+29 , 2004, astro-ph/0411075.

[72]  C. Maraston Evolutionary population synthesis: models, analysis of the ingredients and application to high‐z galaxies , 2004, astro-ph/0410207.

[73]  J. Brinkmann,et al.  The Origin of the Mass-Metallicity Relation: Insights from 53,000 Star-forming Galaxies in the Sloan Digital Sky Survey , 2004, astro-ph/0405537.

[74]  Stefano Casertano,et al.  Type Ia Supernova Discoveries at z > 1 from the Hubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Energy Evolution , 2004, astro-ph/0402512.

[75]  A. Riess,et al.  Time Dependence of ACS WFC CTE Corrections for Photometry and Future Predictions , 2004 .

[76]  Mamoru Doi,et al.  New Constraints on ΩM, ΩΛ, and w from an Independent Set of 11 High-Redshift Supernovae Observed with the Hubble Space Telescope , 2003 .

[77]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[78]  R. Bouwens,et al.  Advanced Camera for Surveys Photometry of the Cluster RDCS 1252.9–2927: The Color-Magnitude Relation at z = 1.24 , 2003, astro-ph/0309036.

[79]  Massimo Stiavelli,et al.  The Hubble Ultra Deep Field , 2003, astro-ph/0607632.

[80]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters , 2003, astro-ph/0302209.

[81]  M. S. Burns,et al.  The Hubble diagram of type Ia supernovae as a function of host galaxy morphology , 2002, astro-ph/0211444.

[82]  E. Linder Exploring the expansion history of the universe. , 2002, Physical review letters.

[83]  J. Anthony Tyson,et al.  Survey and Other Telescope Technologies and Discoveries , 2002 .

[84]  B. Whitmore,et al.  The Accuracy of WFPC2 Photometric Zeropoints , 2002 .

[85]  R. Bacon,et al.  Overview of the Nearby Supernova Factory , 2002, SPIE Astronomical Telescopes + Instrumentation.

[86]  Mark Dickinson,et al.  The Great Observatories Origins Deep Survey , 2002, astro-ph/0204213.

[87]  L. Ho,et al.  Detailed Structural Decomposition of Galaxy Images , 2002, astro-ph/0204182.

[88]  S. Arribas,et al.  The 2002 HST Calibration Workshop, Hubble after the installation of the ACS and the NICMOS cooling system : proceedings of a workshop held at the Space Telescope Science Institute, Baltimore, Maryland, October 17 and 18, 2002 , 2002 .

[89]  N. Benı́tez,et al.  The Photometric Performance and Calibration of the Hubble Space Telescope Advanced Camera for Surveys , 2005, astro-ph/0507614.

[90]  Andrew R. Liddle,et al.  Cosmological Inflation and Large-Scale Structure , 2000 .

[91]  I. Hook,et al.  Measurements of Ω and Λ from 42 High-Redshift Supernovae , 1998, astro-ph/9812133.

[92]  R. Hook,et al.  Drizzle: A Method for the Linear Reconstruction of Undersampled Images , 1998, astro-ph/9808087.

[93]  George F. Hartig,et al.  Long-wavelength scattered-light halos in ASC CCDs , 1998, Astronomical Telescopes and Instrumentation.

[94]  A. Pickles A Stellar Spectral Flux Library: 1150–25000 Å , 1998 .

[95]  N. B. Suntzeff,et al.  Supernova Limits on the Cosmic Equation of State , 1998, astro-ph/9806396.

[96]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[97]  A. Riess,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[98]  M. Phillips,et al.  The High-Z Supernova Search: Measuring Cosmic Deceleration and Global Curvature of the Universe Using Type Ia Supernovae , 1998, astro-ph/9805200.

[99]  R. Ellis,et al.  Discovery of a supernova explosion at half the age of the Universe , 1997, Nature.

[100]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[101]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[102]  E. al.,et al.  BVRI Light Curves for 22 Type Ia Supernovae , 1996, astro-ph/9609064.

[103]  R. Schommer,et al.  The Absolute Luminosities of the Calan/Tololo Type Ia Supernovae , 1996, astro-ph/9609059.

[104]  M. Fukugita,et al.  The Sloan Digital Sky Survey Photometric System , 1996 .

[105]  J. B. Oke,et al.  The Palomar Distant Clusters Survey. I. The Cluster Catalog , 1995, astro-ph/9511011.

[106]  Takashi Ichikawa,et al.  GALAXY COLORS IN VARIOUS PHOTOMETRIC BAND SYSTEMS , 1995 .

[107]  S. Perlmutter,et al.  Progress and New Directions for the Berkeley Supernova Search , 1991 .

[108]  W. Couch,et al.  The discovery of a type Ia supernova at a redshift of 0.31 , 1989, Nature.

[109]  J. E. Gunn,et al.  Stellar spectrophotometric atlas, wavelengths from 3130 to 10800 A , 1983 .

[110]  A. Guth Inflationary universe: A possible solution to the horizon and flatness problems , 1981 .