Gini-Type Measures of Risk and Variability: Gini Shortfall, Capital Allocations, and Heavy-Tailed Risks

We introduce and explore Gini-type measures of risk and variability, and develop the corresponding economic capital allocation rules. The new measures are coherent, additive for co-monotonic risks, convenient computationally, and require only finiteness of the mean. To elucidate our theoretical considerations, we derive closed-form expressions for several parametric families of distributions that are of interest in insurance and finance, and further apply our findings to a risk portfolio of a bancassurance company.

[1]  Alexander Schied,et al.  Convex measures of risk and trading constraints , 2002, Finance Stochastics.

[2]  Edward Furman,et al.  Weighted Premium Calculation Principles , 2006 .

[3]  Ludger Rüschendorf,et al.  Mathematical Risk Analysis: Dependence, Risk Bounds, Optimal Allocations and Portfolios , 2013 .

[4]  Dieter Denneberg,et al.  Premium Calculation: Why Standard Deviation Should be Replaced by Absolute Deviation , 1990, ASTIN Bulletin.

[5]  Abaxbank,et al.  Spectral Measures of Risk : a Coherent Representation of Subjective Risk Aversion , 2002 .

[6]  John Cotter,et al.  Spectral Risk Measures: Properties and Limitations , 2008, 1103.5674.

[7]  John Knight,et al.  Return Distributions in Finance , 2000 .

[8]  D. Schmeidler Integral representation without additivity , 1986 .

[9]  Giovanni Maria Giorgi,et al.  Bibliographic portrait of the Gini concentration ratio , 2005 .

[10]  Philippe Artzner,et al.  Coherent Measures of Risk , 1999 .

[11]  M. Yaari The Dual Theory of Choice under Risk , 1987 .

[12]  M. Kratz,et al.  What is the Best Risk Measure in Practice? A Comparison of Standard Measures , 2013, 1312.1645.

[13]  Bin Wang,et al.  Aggregation-robustness and model uncertainty of regulatory risk measures , 2015, Finance Stochastics.

[14]  Survival Probabilities Based on Pareto Claim Distributions , 1980 .

[15]  Ruodu Wang,et al.  Risk Aversion in Regulatory Capital Principles , 2018 .

[16]  Freddy Delbaen,et al.  Monetary utility functions , 2012 .

[17]  M. Rothschild,et al.  Increasing risk: I. A definition , 1970 .

[18]  S. Kotz,et al.  Symmetric Multivariate and Related Distributions , 1989 .

[19]  Volker Krätschmer,et al.  Comparative and qualitative robustness for law-invariant risk measures , 2012, Finance Stochastics.

[20]  Pietro Millossovich,et al.  Sensitivity Analysis Using Risk Measures , 2014, Risk analysis : an official publication of the Society for Risk Analysis.

[21]  Robert F. Engle,et al.  Capital Shortfall: A New Approach to Ranking and Regulating Systemic Risks † , 2012 .

[22]  Arne Sandström,et al.  Handbook of Solvency for Actuaries and Risk Managers: Theory and Practice , 2010 .

[23]  Harry H. Panjer,et al.  MEASUREMENT OF RISK, SOLVENCY REQUIREMENTS AND ALLOCATION OF CAPITAL WITHIN FINANCIAL CONGLOMERATES , 2002 .

[24]  Ruodu Wang,et al.  A Theory for Measures of Tail Risk , 2016, Math. Oper. Res..

[25]  A. Azzalini A class of distributions which includes the normal ones , 1985 .

[26]  Terry J. Lyons,et al.  Stochastic finance. an introduction in discrete time , 2004 .

[27]  P. Embrechts,et al.  An Academic Response to Basel 3.5 , 2014 .

[28]  D. Denneberg Non-additive measure and integral , 1994 .

[29]  James B. McDonald,et al.  14 Probability distributions for financial models , 1996 .

[30]  Edward Furman,et al.  Weighted Risk Capital Allocations , 2008 .

[31]  Emiliano A. Valdez,et al.  Tail Conditional Expectations for Elliptical Distributions , 2003 .

[32]  Jan Dhaene,et al.  The Concept of Comonotonicity in Actuarial Science and Finance: Applications , 2002 .

[33]  G. Giorgi A fresh look at the topical interest of the Gini concentration ratio , 2005 .

[34]  P. Embrechts,et al.  Quantitative Risk Management: Concepts, Techniques, and Tools , 2005 .

[35]  Ludger Rüschendorf,et al.  On convex risk measures on Lp-spaces , 2009, Math. Methods Oper. Res..

[36]  Jonas Schmitt Portfolio Selection Efficient Diversification Of Investments , 2016 .

[37]  Christine M. Anderson-Cook,et al.  Book review: quantitative risk management: concepts, techniques and tools, revised edition, by A.F. McNeil, R. Frey and P. Embrechts. Princeton University Press, 2015, ISBN 978-0-691-16627-8, xix + 700 pp. , 2017, Extremes.

[38]  R. Rockafellar,et al.  Generalized Deviations in Risk Analysis , 2004 .

[39]  A. Azzalini,et al.  Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t‐distribution , 2003, 0911.2342.

[40]  P. Wakker,et al.  Nonmonotonic Choquet Integrals , 2001 .

[41]  Edward Furman,et al.  Tail Variance Premium with Applications for Elliptical Portfolio of Risks , 2006, ASTIN Bulletin.

[42]  R. Dana,et al.  A REPRESENTATION RESULT FOR CONCAVE SCHUR CONCAVE FUNCTIONS , 2005 .

[43]  Jan Dhaene,et al.  The Concept of Comonotonicity in Actuarial Science and Finance: Theory , 2002, Insurance: Mathematics and Economics.

[44]  Hans Bühlmann,et al.  Mathematical Methods in Risk Theory , 1970 .

[45]  Edna Schechtman,et al.  The Gini Methodology: A Primer on a Statistical Methodology , 2012 .

[46]  Stan Uryasev,et al.  Risk Tuning With Generalized Linear Regression , 2007, Math. Oper. Res..

[47]  H. Föllmer,et al.  The Axiomatic Approach to Risk Measures for Capital Determination , 2015 .

[48]  H. Markowitz Portfolio Selection: Efficient Diversification of Investments , 1971 .

[49]  Ričardas Zitikis,et al.  Weighted Pricing Functionals With Applications to Insurance , 2009 .

[50]  L. Ceriani,et al.  The origins of the Gini index: extracts from Variabilità e Mutabilità (1912) by Corrado Gini , 2012 .

[51]  S. Rachev Handbook of heavy tailed distributions in finance , 2003 .

[52]  Bogdan Grechuk,et al.  Maximum Entropy Principle with General Deviation Measures , 2009, Math. Oper. Res..

[53]  R. Dobrushin Prescribing a System of Random Variables by Conditional Distributions , 1970 .