Symmetric orthonormal scaling functions and wavelets with dilation factor 4

It is well known that in the univariate case, up to an integer shift and possible sign change, there is no dyadic compactly supported symmetric orthonormal scaling function except for the Haar function. In this paper we are concerned with the construction of symmetric orthonormal scaling functions with dilation factor d=4. Several examples of such orthonormal scaling functions are provided in this paper. In particular, two examples of C1 orthonormal scaling functions, which are symmetric about 0 and 1/6, respectively, are presented. We will then discuss how to construct symmetric wavelets from these scaling functions. We explicitly construct the corresponding orthonormal symmetric wavelets for all the examples given in this paper.

[1]  Grant V. Welland,et al.  Construction of compactp-wavelets , 1993 .

[2]  George G. Lorentz,et al.  Constructive Approximation , 1993, Grundlehren der mathematischen Wissenschaften.

[3]  R. Jia,et al.  Multivariate refinement equations and convergence of subdivision schemes , 1998 .

[4]  I. Daubechies,et al.  Othonormal bases of compactly supported wavelets III: better frequency resolution , 1993 .

[5]  C. Chui,et al.  Construction of Compactly Supported Symmetric and Antisymmetric Orthonormal Wavelets with Scale = 3 , 1995 .

[6]  S. L. Lee,et al.  Stability and orthonormality of multivariate refinable functions , 1997 .

[7]  Peter N. Heller,et al.  Theory of regular M-band wavelet bases , 1993, IEEE Trans. Signal Process..

[8]  Paul L. Butzer,et al.  Fourier analysis and approximation , 1971 .

[9]  Zuowei Shen,et al.  Wavelets and pre-wavelets in low dimensions , 1992 .

[10]  Truong Q. Nguyen,et al.  Linear phase paraunitary filter banks: theory, factorizations and designs , 1993, IEEE Trans. Signal Process..

[11]  Ding-Xuan Zhou,et al.  Stability of refinable functions, multiresolution analysis, and Haar bases , 1996 .

[12]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[13]  Amara Lynn Graps,et al.  An introduction to wavelets , 1995 .

[14]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[15]  Zuowei Shen,et al.  Compactly supported (bi)orthogonal wavelets generated by interpolatory refinable functions , 1999, Adv. Comput. Math..

[16]  L. Villemoes Wavelet analysis of refinement equations , 1994 .

[17]  I. Daubechies,et al.  Two-scale difference equations II. local regularity, infinite products of matrices and fractals , 1992 .

[18]  A. Cohen,et al.  Regularity of Multivariate Refinable Functions , 1999 .

[19]  Z. Ditzian Moduli of smoothness using discrete data , 1987 .

[20]  Zuowei Shen,et al.  Multiresolution and wavelets , 1994, Proceedings of the Edinburgh Mathematical Society.

[21]  R. Jia Subdivision Schemes in L p Spaces , 1995 .

[22]  C. Micchelli,et al.  Stationary Subdivision , 1991 .

[23]  L. Schumaker,et al.  Recent advances in wavelet analysis , 1995 .

[24]  DaubechiesIngrid Orthonormal bases of compactly supported wavelets II , 1993 .

[25]  S. L. Lee,et al.  Convergence of multidimensional cascade algorithm , 1998 .

[26]  R. Jia Characterization of Smoothness of Multivariate Refinable Functions in Sobolev Spaces , 1999 .

[27]  R. Jia,et al.  Stability and linear independence associated with wavelet decompositions , 1993 .

[28]  Rong-Qing Jia,et al.  Subdivision schemes inLp spaces , 1995, Adv. Comput. Math..

[29]  Zuowei Shen,et al.  An algorithm for matrix extension and wavelet construction , 1996, Math. Comput..