A Unified Pseudospectral Framework for Nonlinear Controller and Observer Design

As a result of significant progress in pseudospectral methods for real-time dynamic optimization, it has become apparent in recent years that it is possible to present a unified framework for both controller and observer design. In this paper, we present such an approach for nonlinear systems. The method can be applied to a wide variety of nonlinear systems. The convergence of the proposed computational method is guaranteed under verifiable conditions. Several numerical examples are also presented to demonstrate the efficiency of the proposed computational framework.

[1]  D. Mayne,et al.  Moving horizon observers and observer-based control , 1995, IEEE Trans. Autom. Control..

[2]  I.M. Ross,et al.  On the Pseudospectral Covector Mapping Theorem for Nonlinear Optimal Control , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[3]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2002, SIAM J. Optim..

[4]  Elijah Polak,et al.  Optimization: Algorithms and Consistent Approximations , 1997 .

[5]  Wei Kang,et al.  Pseudospectral Feedback Control: Foundations, Examples and Experimental Results , 2006 .

[6]  I. Michael Ross,et al.  Pseudospectral methods for optimal motion planning of differentially flat systems , 2004, IEEE Transactions on Automatic Control.

[7]  I. Michael Ross,et al.  Costate Estimation by a Legendre Pseudospectral Method , 1998 .

[8]  Wei Lin,et al.  A continuous feedback approach to global strong stabilization of nonlinear systems , 2001, IEEE Trans. Autom. Control..

[9]  Min-Jea Tahk,et al.  Constrained trajectory optimization for lunar landing during the powered descent phase , 2009, 2009 ICCAS-SICE.

[10]  J. Gauthier,et al.  A simple observer for nonlinear systems applications to bioreactors , 1992 .

[11]  Wei Kang,et al.  Moving horizon numerical observers of nonlinear control systems , 2006, IEEE Transactions on Automatic Control.

[12]  Stephen L. Campbell,et al.  Convergence of Nonconvergent IRK Discretizations of Optimal Control Problems with State Inequality Constraints , 2001, SIAM J. Sci. Comput..

[13]  Ping Lu,et al.  Closed-loop endoatmospheric ascent guidance , 2003 .

[14]  William W. Hager,et al.  Second-Order Runge-Kutta Approximations in Control Constrained Optimal Control , 2000, SIAM J. Numer. Anal..

[15]  I. Michael Ross,et al.  A unified computational framework for real-time optimal control , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[16]  L. Trefethen Spectral Methods in MATLAB , 2000 .

[17]  I. Michael Ross,et al.  Pseudospectral Methods for Infinite-Horizon Nonlinear Optimal Control Problems , 2005 .

[18]  Anil V. Rao,et al.  Practical Methods for Optimal Control Using Nonlinear Programming , 1987 .

[19]  I. Michael Ross,et al.  Direct trajectory optimization by a Chebyshev pseudospectral method , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[20]  Qi Gong,et al.  A Pseudospectral Observer for Nonlinear Systems , 2005 .

[21]  Wei Kang,et al.  Convergence of Pseudospectral Methods for a Class of Discontinuous Optimal Control , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[22]  I. Michael Ross,et al.  A pseudospectral method for the optimal control of constrained feedback linearizable systems , 2005, Proceedings of 2005 IEEE Conference on Control Applications, 2005. CCA 2005..

[23]  I. Michael Ross,et al.  Legendre Pseudospectral Approximations of Optimal Control Problems , 2003 .

[24]  Wei Kang,et al.  Practical stabilization through real-time optimal control , 2006, 2006 American Control Conference.

[25]  J. Grizzle,et al.  Observer design for nonlinear systems with discrete-time measurements , 1995, IEEE Trans. Autom. Control..