A new hidden chaotic attractor with extreme multi-stability

Abstract The topic of hidden attractors is a very hot topic in nonlinear dynamics. Multi-stability is another important topic in that area. One recent important category of multi-stable systems is “systems with extreme multi-stability”. In this paper we introduce a new five-dimensional chaotic system with both hidden attractors and extreme multi-stability. Such systems are very rare in literature. Also, we show its feasibility by the help of electronic circuit implementation.

[1]  Awadhesh Prasad,et al.  Perpetual Points: New Tool for Localization of Coexisting Attractors in Dynamical Systems , 2017, Int. J. Bifurc. Chaos.

[2]  T. Kapitaniak,et al.  Stochastic response with bifurcations to non-linear Duffing's oscillator , 1985 .

[3]  Nikolay V. Kuznetsov,et al.  Hidden oscillations in mathematical model of drilling system actuated by induction motor with a wound rotor , 2014 .

[4]  Nikolay V. Kuznetsov,et al.  Hidden attractor in smooth Chua systems , 2012 .

[5]  Luigi Fortuna,et al.  Nonideal Behavior of Analog Multipliers for Chaos Generation , 2016, IEEE Transactions on Circuits and Systems II: Express Briefs.

[6]  G. Leonov,et al.  Localization of hidden Chuaʼs attractors , 2011 .

[7]  Bocheng Bao,et al.  Inductor-free simplified Chua’s circuit only using two-op-amp-based realization , 2016 .

[8]  Nikolay V. Kuznetsov,et al.  Hidden attractors in Dynamical Systems. From Hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman Problems to Hidden Chaotic Attractor in Chua Circuits , 2013, Int. J. Bifurc. Chaos.

[9]  Tomasz Kapitaniak,et al.  LOCALLY AND GLOBALLY RIDDLED BASINS IN TWO COUPLED PIECEWISE-LINEAR MAPS , 1997 .

[10]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[11]  Huagan Wu,et al.  Bi-Stability in an Improved Memristor-Based Third-Order Wien-Bridge Oscillator , 2019 .

[12]  Julien Clinton Sprott,et al.  Coexisting Hidden Attractors in a 4-D Simplified Lorenz System , 2014, Int. J. Bifurc. Chaos.

[13]  Nikolay V. Kuznetsov,et al.  Hidden attractor and homoclinic orbit in Lorenz-like system describing convective fluid motion in rotating cavity , 2015, Commun. Nonlinear Sci. Numer. Simul..

[14]  G. Leonov,et al.  Hidden attractors in dynamical systems , 2016 .

[15]  Julien Clinton Sprott,et al.  Are Perpetual Points Sufficient for Locating Hidden Attractors? , 2017, Int. J. Bifurc. Chaos.

[16]  Bishnu Charan Sarkar,et al.  Chaotic electronic oscillator from single amplifier biquad , 2012 .

[17]  N. Kuznetsov,et al.  The Lyapunov dimension and its estimation via the Leonov method , 2016, 1602.05410.

[18]  Bocheng Bao,et al.  Extreme multistability in a memristive circuit , 2016 .

[19]  Bocheng Bao,et al.  Hidden extreme multistability in memristive hyperchaotic system , 2017 .

[20]  Viet-Thanh Pham,et al.  A Novel Cubic-Equilibrium Chaotic System with Coexisting Hidden Attractors: Analysis, and Circuit Implementation , 2018, J. Circuits Syst. Comput..

[21]  Viet-Thanh Pham,et al.  Generating a Chaotic System with One Stable Equilibrium , 2017, Int. J. Bifurc. Chaos.

[22]  Tomasz Kapitaniak,et al.  Co-existing attractors of impact oscillator , 1998 .

[23]  Nikolay V. Kuznetsov,et al.  Hidden attractors in dynamical models of phase-locked loop circuits: Limitations of simulation in MATLAB and SPICE , 2017, Commun. Nonlinear Sci. Numer. Simul..

[24]  U. Feudel,et al.  Control of multistability , 2014 .

[25]  Przemyslaw Perlikowski,et al.  Multistability and Rare attractors in van der Pol-Duffing oscillator , 2011, Int. J. Bifurc. Chaos.

[26]  Julien Clinton Sprott,et al.  Megastability: Coexistence of a countable infinity of nested attractors in a periodically-forced oscillator with spatially-periodic damping , 2017 .

[27]  Luigi Fortuna,et al.  Experimental Evidence of Chaos from Memristors , 2015, Int. J. Bifurc. Chaos.

[28]  Huagan Wu,et al.  Coexisting infinitely many attractors in active band-pass filter-based memristive circuit , 2016 .

[29]  Julien Clinton Sprott,et al.  A Simple Chaotic Flow with a Plane of Equilibria , 2016, Int. J. Bifurc. Chaos.

[30]  Guanrong Chen,et al.  Unusual dynamics and hidden attractors of the Rabinovich–Fabrikant system , 2015, 1511.07765.

[31]  Akif Akgul,et al.  Chaos-based engineering applications with a 3D chaotic system without equilibrium points , 2015, Nonlinear Dynamics.

[32]  Zhouchao Wei,et al.  Dynamical behaviors of a chaotic system with no equilibria , 2011 .

[33]  Tomas Gotthans,et al.  New class of chaotic systems with circular equilibrium , 2015 .

[34]  T. N. Mokaev,et al.  Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion Homoclinic orbits, and self-excited and hidden attractors , 2015 .

[35]  Nikolay V. Kuznetsov,et al.  Control of multistability in hidden attractors , 2015 .

[36]  T. Kapitaniak,et al.  NOISE-ENHANCED PHASE LOCKING IN A STOCHASTIC BISTABLE SYSTEM DRIVEN BY A CHAOTIC SIGNAL , 1999 .

[37]  Tomasz Kapitaniak,et al.  Dynamics of impact oscillator with dry friction , 1996 .

[38]  Julien Clinton Sprott,et al.  Simple Chaotic flows with One Stable equilibrium , 2013, Int. J. Bifurc. Chaos.

[39]  Christos Volos,et al.  A simple three-dimensional fractional-order chaotic system without equilibrium: Dynamics, circuitry implementation, chaos control and synchronization , 2017 .

[40]  Bocheng Bao,et al.  Multiple attractors in a non-ideal active voltage-controlled memristor based Chua's circuit , 2016 .

[41]  Nikolay V. Kuznetsov,et al.  Hidden chaotic sets in a Hopfield neural system , 2017 .

[42]  Julien Clinton Sprott,et al.  Simple Chaotic Flows with a Curve of Equilibria , 2016, Int. J. Bifurc. Chaos.

[43]  Bocheng Bao,et al.  Two-memristor-based Chua’s hyperchaotic circuit with plane equilibrium and its extreme multistability , 2017 .

[44]  Nikolay V. Kuznetsov,et al.  Numerical justification of Leonov conjecture on Lyapunov dimension of Rossler attractor , 2014, Commun. Nonlinear Sci. Numer. Simul..

[45]  Awadhesh Prasad,et al.  Controlling Dynamics of Hidden Attractors , 2015, Int. J. Bifurc. Chaos.

[46]  Christos Volos,et al.  Coexistence of hidden chaotic attractors in a novel no-equilibrium system , 2017 .