Mixed-Effects Models for Conditional Quantiles with Longitudinal Data

We propose a regression method for the estimation of conditional quantiles of a continuous response variable given a set of covariates when the data are dependent. Along with fixed regression coefficients, we introduce random coefficients which we assume to follow a form of multivariate Laplace distribution. In a simulation study, the proposed quantile mixed-effects regression is shown to model the dependence among longitudinal data correctly and estimate the fixed effects efficiently. It performs similarly to the linear mixed model at the central location when the regression errors are symmetrically distributed, but provides more efficient estimates when the errors are over-dispersed. At the same time, it allows the estimation at different locations of conditional distribution, which conveys a comprehensive understanding of data. We illustrate an application to clinical data where the outcome variable of interest is bounded within a closed interval.

[1]  Jeremy MG Taylor,et al.  Robust Statistical Modeling Using the t Distribution , 1989 .

[2]  C. S. Davis Semi-parametric and non-parametric methods for the analysis of repeated measurements with applications to clinical trials. , 1991, Statistics in medicine.

[3]  Jstor Journal of the Royal Statistical Society. Series D, (The statistician) , 1993 .

[4]  C. McCulloch Maximum Likelihood Variance Components Estimation for Binary Data , 1994 .

[5]  W. Gilks,et al.  Adaptive Rejection Metropolis Sampling Within Gibbs Sampling , 1995 .

[6]  Moshe Buchinsky Estimating the asymptotic covariance matrix for quantile regression models a Monte Carlo study , 1995 .

[7]  Sin-Ho Jung Quasi-Likelihood for Median Regression Models , 1996 .

[8]  S. Lipsitz,et al.  Quantile Regression Methods for Longitudinal Data with Drop‐outs: Application to CD4 Cell Counts of Patients Infected with the Human Immunodeficiency Virus , 1997 .

[9]  Moshe Buchinsky Recent Advances in Quantile Regression Models: A Practical Guideline for Empirical Research , 1998 .

[10]  J. Booth,et al.  Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm , 1999 .

[11]  R. Koenker,et al.  Goodness of Fit and Related Inference Processes for Quantile Regression , 1999 .

[12]  D. Andrews,et al.  A Three-Step Method for Choosing the Number of Bootstrap Repetitions , 2000 .

[13]  Ana Ivelisse Avilés,et al.  Linear Mixed Models for Longitudinal Data , 2001, Technometrics.

[14]  Ying Nian Wu,et al.  Efficient Algorithms for Robust Estimation in Linear Mixed-Effects Models Using the Multivariate t Distribution , 2001 .

[15]  Donald W. K. Andrews,et al.  Evaluation of a three-step method for choosing the number of bootstrap repetitions , 2001 .

[16]  Samuel Kotz,et al.  The Laplace Distribution and Generalizations: A Revisit with Applications to Communications, Economics, Engineering, and Finance , 2001 .

[17]  W. Fung,et al.  Median regression for longitudinal data , 2003, Statistics in medicine.

[18]  Keming Yu,et al.  Quantile regression: applications and current research areas , 2003 .

[19]  Peter C Austin,et al.  Quantile regression: a statistical tool for out-of-hospital research. , 2003, Academic emergency medicine : official journal of the Society for Academic Emergency Medicine.

[20]  Victor Chernozhukov,et al.  Quantile Regression Under Misspecification, with an Application to the U.S. Wage Structure , 2004 .

[21]  R. Koenker Quantile regression for longitudinal data , 2004 .

[22]  Jun Zhu,et al.  On the simulation size and the convergence of the Monte Carlo EM algorithm via likelihood-based distances , 2004 .

[23]  E. Demidenko,et al.  Mixed Models: Theory and Applications (Wiley Series in Probability and Statistics) , 2004 .

[24]  Jianwen Cai,et al.  Quantile Regression Models with Multivariate Failure Time Data , 2005, Biometrics.

[25]  B. Cade,et al.  QUANTILE REGRESSION REVEALS HIDDEN BIAS AND UNCERTAINTY IN HABITAT MODELS , 2005 .

[26]  J. Mata,et al.  Counterfactual decomposition of changes in wage distributions using quantile regression , 2005 .

[27]  Muni S. Srivastava,et al.  Estimation and Testing of Parameters in Multivariate Laplace Distribution , 2005 .

[28]  Keming Yu,et al.  A Three-Parameter Asymmetric Laplace Distribution and Its Extension , 2005 .

[29]  T. Lancaster,et al.  Bayesian Quantile Regression , 2005 .

[30]  P. Austin,et al.  The use of quantile regression in health care research: a case study examining gender differences in the timeliness of thrombolytic therapy , 2005, Statistics in medicine.

[31]  Te-Won Lee,et al.  On the multivariate Laplace distribution , 2006, IEEE Signal Processing Letters.

[32]  P. J. Lindsey,et al.  Multivariate distributions with correlation matrices for nonlinear repeated measurements , 2006, Comput. Stat. Data Anal..

[33]  R. Koenker,et al.  Quantile regression methods for reference growth charts , 2006, Statistics in medicine.

[34]  Annie Qu,et al.  MAXIMUM LIKELIHOOD INFERENCE IN ROBUST LINEAR MIXED-EFFECTS MODELS USING MULTIVARIATE t DISTRIBUTIONS , 2007 .

[35]  M. Bottai,et al.  Quantile regression for longitudinal data using the asymmetric Laplace distribution. , 2007, Biostatistics.

[36]  Ji Zhu,et al.  BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/btm364 Data and text mining Analysis of array CGH data for cancer studies using , 2022 .

[37]  R. Koenker,et al.  Regression Quantiles , 2007 .

[38]  Arnold J. Stromberg,et al.  A novel application of quantile regression for identification of biomarkers exemplified by equine cartilage microarray data , 2008, BMC Bioinformatics.

[39]  Andreas Karlsson,et al.  Nonlinear Quantile Regression Estimation of Longitudinal Data , 2007, Commun. Stat. Simul. Comput..

[40]  Helle Visk,et al.  On the Parameter Estimation of the Asymmetric Multivariate Laplace Distribution , 2009 .

[41]  Mendel Fygenson,et al.  INFERENCE FOR CENSORED QUANTILE REGRESSION MODELS IN LONGITUDINAL STUDIES , 2009, 0904.0080.