Polaritonic solitons in a Bose-Einstein condensate trapped in a soft optical lattice.

We investigate the ground state (GS) of a collisionless Bose-Einstein condensate (BEC) trapped in a soft one-dimensional optical lattice (OL), which is formed by two counterpropagating optical beams perturbed by the BEC density profile through the local-field effect (LFE). We show that LFE gives rise to an envelope-deformation potential, a nonlocal potential resulting from the phase deformation, and an effective self-interaction of the condensate. As a result, stable photon-atomic (polaritonic) lattice solitons, including an optical component, in the form of the deformation of the soft OL, in a combination with a localized matter-wave component, are generated in the blue-detuned setting, without any direct interaction between atoms. These self-trapped modes, which realize the system's GS, are essentially different from the gap solitons supported by the interplay of the OL potential and collisional interactions between atoms. A transition to tightly bound modes from loosely bound ones occurs with the increase of the number of atoms in the BEC.

[1]  D. Frantzeskakis,et al.  Collisionally inhomogeneous Bose-Einstein condensates in double-well potentials , 2008, 0811.1314.

[2]  E. Hagley,et al.  Observation of a red-blue detuning asymmetry in matter-wave superradiance , 2010, CLEO: 2011 - Laser Science to Photonic Applications.

[3]  Bright solitons in coupled defocusing NLS equation supported by coupling: Application to Bose-Einstein condensation [rapid communication] , 2005, cond-mat/0506444.

[4]  Zheng-Wei Zhou,et al.  Bose-Einstein condensates on a ring with periodic scattering length: Spontaneous symmetry breaking and entanglement , 2008 .

[5]  Massimo Inguscio,et al.  Anderson localization of a non-interacting Bose–Einstein condensate , 2008, Nature.

[6]  Lenz,et al.  Nonlinear atom optics: General formalism and atomic solitons. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[7]  Hidetsugu Sakaguchi,et al.  Matter-wave solitons in nonlinear optical lattices. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  Juan Belmonte-Beitia,et al.  Lie symmetries and solitons in nonlinear systems with spatially inhomogeneous nonlinearities. , 2006, Physical review letters.

[9]  O. Zobay,et al.  Magneto-optical control of bright atomic solitons , 2000, cond-mat/0004088.

[10]  Y. Sinai Anderson localization for one-dimensional difference Schrödinger operator with quasiperiodic potential , 1987 .

[11]  B Eiermann,et al.  Bright Bose-Einstein gap solitons of atoms with repulsive interaction. , 2004, Physical review letters.

[12]  A. Bishop,et al.  Controlling the motion of cold molecules with deep periodic optical potentials , 2006 .

[13]  V. Konotop,et al.  Spatial solitons and instabilities of light beams in a three-level atomic medium with a standing-wave control field , 2009 .

[14]  M. Segev,et al.  Observation of vortex-ring "discrete" solitons in 2D photonic lattices , 2004, Conference on Lasers and Electro-Optics, 2004. (CLEO)..

[15]  Hidetsugu Sakaguchi,et al.  Solitons in combined linear and nonlinear lattice potentials , 2010, 1001.0425.

[16]  M. Modugno Exponential localization in one-dimensional quasi-periodic optical lattices , 2009, 0901.0210.

[17]  P. Kevrekidis,et al.  Stable vortex-bright-soliton structures in two-component Bose-Einstein condensates. , 2010, Physical review letters.

[18]  A. Martin,et al.  Quantum dynamics of atomic bright solitons under splitting and recollision, and implications for interferometry , 2011, 1111.5686.

[19]  Gadi Fibich,et al.  Bound states of nonlinear Schrödinger equations with a periodic nonlinear microstructure , 2006 .

[20]  P. Barker,et al.  Slowing molecules by optical microlinear deceleration , 2002 .

[21]  Anomalous Transport: A Mathematical Framework , 1997, cond-mat/9706239.

[22]  Stephan W Koch,et al.  Exciton–polariton light–semiconductor coupling effects , 2011 .

[23]  A. M. Kamchatnov,et al.  DYNAMICS OF BRIGHT MATTER WAVE SOLITONS IN A BOSE–EINSTEIN CONDENSATE , 2005 .

[24]  I. McCulloch,et al.  Quasiperiodic Bose-Hubbard model and localization in one-dimensional cold atomic gases , 2008, 0802.3774.

[25]  J. Audretsch,et al.  Local-field approach to the interaction of an ultracold dense Bose gas with a light field , 1999 .

[26]  Walls,et al.  Atomic soliton in a traveling wave laser beam. , 1994, Physical review letters.

[27]  J. Danzl,et al.  Control of interaction-induced dephasing of Bloch oscillations. , 2007, Physical review letters.

[28]  P. Berini Long-range surface plasmon polaritons , 2009 .

[29]  J. Dalibard,et al.  Many-Body Physics with Ultracold Gases , 2007, 0704.3011.

[30]  P. Barker,et al.  Decelerating and bunching molecules with pulsed traveling optical lattices (10 pages) , 2004 .

[31]  Jianke Yang,et al.  Nonlinear Waves in Integrable and Nonintegrable Systems , 2010, Mathematical modeling and computation.

[32]  Yuri S. Kivshar,et al.  Observation of double-charge discrete vortex solitons in hexagonal photonic lattices , 2009 .

[33]  M. Zhan,et al.  Matter-wave self-imaging by atomic center-of-mass motion induced interference. , 2008, Physical review letters.

[34]  Sandro Stringari,et al.  Theory of ultracold atomic Fermi gases , 2007, 0706.3360.

[35]  M. Stockman Nanoplasmonics: past, present, and glimpse into future. , 2011, Optics express.

[36]  D. Mihalache,et al.  Subwavelength vortical plasmonic lattice solitons. , 2011, Optics letters.

[37]  Large atom number Bose-Einstein condensate of sodium. , 2006, The Review of scientific instruments.

[38]  Y. Kivshar,et al.  Interaction of matter-wave gap solitons in optical lattices , 2004, cond-mat/0408234.

[39]  Panayotis G. Kevrekidis,et al.  The Discrete Nonlinear Schrödinger Equation: Mathematical Analysis, Numerical Computations and Physical Perspectives , 2009 .

[40]  Andrea Marini,et al.  Stable spatial plasmon solitons in a dielectric-metal-dielectric geometry with gain and loss. , 2011, Optics express.

[41]  Electromagnetic wave dynamics in matter-wave superradiant scattering. , 2010, Physical review letters.

[42]  Reduced-symmetry two-dimensional solitons in photonic lattices. , 2005, Physical review letters.

[43]  A. Sanpera,et al.  Quantum switches and quantum memories for matter-wave lattice solitons , 2006, cond-mat/0612370.

[44]  Y. Kivshar,et al.  Self-localization of polariton condensates in periodic potentials. , 2013, Physical review letters.

[45]  V. A. Brazhnyi,et al.  THEORY OF NONLINEAR MATTER WAVES IN OPTICAL LATTICES , 2004 .

[46]  S. Cornish,et al.  Realizing bright-matter-wave-soliton collisions with controlled relative phase. , 2010, 1010.3219.

[47]  Y. Kivshar,et al.  Symbiotic optical solitons and modulational instability , 1991 .

[48]  B. Malomed,et al.  Symbiotic gap and semigap solitons in Bose-Einstein condensates , 2008, 0801.2337.

[49]  Demetrios N. Christodoulides,et al.  Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices , 2003, Nature.

[50]  W. Lu,et al.  Untrapped dynamics of molecules within an accelerating optical lattice , 2003 .

[51]  H. Ritsch,et al.  Quantum optics with quantum gases: Controlled state reduction by designed light scattering , 2009, 0904.4210.

[52]  Wieslaw Krolikowski,et al.  Spatial solitons in optically induced gratings. , 2003, Optics letters.

[53]  B. Malomed,et al.  Solitons and solitary vortices in pancake-shaped Bose-Einstein condensates , 2009, 0904.2790.

[54]  V. Konotop,et al.  Nonlinear excitations in arrays of Bose-Einstein condensates , 2001, cond-mat/0106042.

[55]  A Smerzi,et al.  Discrete solitons and breathers with dilute Bose-Einstein condensates. , 2001, Physical review letters.

[56]  Analysis of localization phenomena in weakly interacting disordered lattice gases , 2006, cond-mat/0609774.

[57]  M. Modugno,et al.  Atom interferometry with a weakly interacting Bose-Einstein condensate. , 2007, Physical review letters.

[58]  Edmond Orignac,et al.  Superfluidity and Anderson localisation for a weakly interacting Bose gas in a quasiperiodic potential , 2008, 0812.3479.

[59]  Juncheng Wei,et al.  Symbiotic bright solitary wave solutions of coupled nonlinear Schrödinger equations , 2006, math/0610133.

[60]  M. Modugno,et al.  Delocalization of a disordered bosonic system by repulsive interactions , 2009, 0910.5062.

[61]  Walls,et al.  Quantum field theory of interaction of ultracold atoms with a light wave: Bragg scattering in nonlinear atom optics. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[62]  Y. Kivshar,et al.  Observation of discrete vortex solitons in optically induced photonic lattices. , 2004, Physical review letters.

[63]  N. Rosanov,et al.  Interferometric precision measurements with Bose–Einstein condensate solitons formed by an optical lattice , 2007 .

[64]  B. Malomed,et al.  One- and two-dimensional reductions of the mean-field description of degenerate Fermi gases , 2012, 1207.1738.

[65]  Mordechai Segev,et al.  Two-dimensional optical lattice solitons. , 2003, Physical review letters.

[66]  S. Karpov,et al.  Propagation and transformation of electromagnetic waves in one-dimensional periodic structures , 1993 .

[67]  Boris A. Malomed,et al.  Spontaneous symmetry breaking in a nonlinear double-well structure , 2008, 0810.0859.

[68]  Randall G. Hulet,et al.  Bright matter wave solitons in Bose–Einstein condensates , 2003 .

[69]  K. Mølmer,et al.  Maxwell-Bloch equations: A unified view of nonlinear optics and nonlinear atom optics. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[70]  Aurel Bulgac,et al.  Local density functional theory for superfluid fermionic systems: The Unitary gas , 2007, cond-mat/0703526.

[71]  B. Malomed,et al.  Spatiotemporal optical solitons , 2005 .

[72]  B. Malomed,et al.  Two-dimensional solitons and vortices in media with incommensurate linear and nonlinear lattice potentials , 2012, 1201.2254.

[73]  S. Adhikari,et al.  Localization of a Bose-Fermi mixture in a bichromatic optical lattice , 2011, 1108.0691.

[74]  B. Malomed,et al.  Vector solitons in nonlinear lattices. , 2009, Optics letters.

[75]  Mikhail N Shneider,et al.  Strong local-field effect on the dynamics of a dilute atomic gas irradiated by two counterpropagating optical fields: beyond standard optical lattices. , 2011, Physical review letters.

[76]  C. Weiss,et al.  Nonlocal quantum superpositions of bright matter-wave solitons and dimers , 2012, 1208.4984.

[77]  G. Grynberg,et al.  Cold atoms in dissipative optical lattices , 2001 .

[78]  Mordechai Segev,et al.  Discrete solitons in photorefractive optically induced photonic lattices. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[79]  S. Adhikari,et al.  Localization of a Bose-Einstein condensate in a bichromatic optical lattice , 2009, 0907.3498.

[80]  Symbiotic solitons in heteronuclear multicomponent Bose-Einstein condensates , 2005, cond-mat/0506405.

[81]  Panayotis G. Kevrekidis,et al.  The Discrete Nonlinear Schrödinger Equation: Mathematical Analysis, Numerical Computations and Physical Perspectives , 2009 .

[82]  Antun Balaz,et al.  Faraday waves in binary nonmiscible Bose-Einstein condensates , 2012, 1202.2059.

[83]  C. Weiss,et al.  Scattering bright solitons: quantum versus mean-field behavior , 2012, 1208.2941.

[84]  M. Segev,et al.  Disorder-Enhanced Transport in Photonic Quasicrystals , 2011, Science.

[85]  D. Skryabin,et al.  Spatial solitons in periodic nanostructures , 2009, 0901.4288.

[86]  Mikhail N. Shneider,et al.  Kinetic description of the field–gas interaction in intense optical lattices , 2011 .

[87]  M. Oberthaler,et al.  Dynamics of Bose-Einstein condensates in optical lattices , 2006 .

[88]  Boris A. Malomed,et al.  Solitons in nonlinear lattices , 2011 .

[89]  Y. Kivshar,et al.  Self-focusing and spatial plasmon-polariton solitons. , 2009, Optics express.

[90]  H. Ritsch,et al.  Quantum optics with quantum gases , 2009, 0901.3335.

[91]  K. Bliokh,et al.  Resonant Plasmon-soliton interaction , 2008, 0806.2183.

[92]  Bambi Hu,et al.  Management of Bose-Einstein condensates by a spatially periodic modulation of the atomic s-wave scattering length , 2007 .

[93]  B. Malomed,et al.  Gap solitons in a model of a superfluid fermion gas in optical lattices , 2008, 0807.3495.

[94]  Robert A Van Gorder,et al.  Unstaggered-staggered solitons in two-component discrete nonlinear Schrödinger lattices. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.