3rd International Congress on Mechanical Models in Structural Engineering
暂无分享,去创建一个
Luisa María Gil-Martín | Enrique Hernández-Montes | Pablo de la Fuente | Tomaso Trombetti | Michele Palermo | Juan Francisco Carbonell-Márquez | Mark Aschheim | Carlos Zanuy | Juan Manuel Gallego | Luis Albajar | David López Martín | Andrés Sáez | Víctor Jesús Compán Cardiel | Margarita Cámara | Esperanza Rodríguez-Mayorga | P. Alba | Alejandro de Miguel | García Román | Felipe García-Sánchez | Alejandro Mateo Hernández-Díaz | Juan Jiménez-Alonso | F. García-Sánchez | M. Palermo | T. Trombetti | J. Gallego | L. Albajar | A. Sáez | L. Gil-Martín | E. Hernández-Montes | M. Aschheim | J. F. Carbonell-Márquez | V. C. Cardiel | P. D. L. Fuente | A. Hernández-Díaz | J. Jiménez-Alonso | C. Zanuy | Esperanza Rodríguez-Mayorga | P. Alba | M. Cámara | A. Miguel | García Román | David Martin
[1] Masanori Iiba,et al. Experimental study on enhancement of self-restoration of concrete beams using SMA wire , 2003, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.
[2] Roberto T. Leon,et al. Experimental results of a NiTi shape memory alloy (SMA)-based recentering beam-column connection , 2011 .
[3] Jaime Calavera. Proyecto y cálculo de estructuras de hormigón , 1999 .
[4] G. Baker,et al. Elastic Stability of Simply Supported Rectangular Plates Under Locally Distributed Edge Forces , 1982 .
[5] Brahim Benmokrane,et al. Fatigue behaviour of reinforced concrete beams strengthened in shear with advanced composite , 2009 .
[6] Bradley W. Penar,et al. Recentering Beam-Column Connections Using Shape Memory Alloys , 2005 .
[7] Clyde E. Kesler,et al. Static and Fatigue Strength in Shear of Beams with Tensile Reinforcement , 1958 .
[8] F. Vecchio,et al. Simplified Modified Compression Field Theory for Calculating Shear Strength of Reinforced Concrete Elements , 2006 .
[9] Moncef L. Nehdi,et al. Shape memory alloy-based smart RC bridges: overview of state-of-the-art , 2008 .
[10] Carlos Zanuy Sánchez. Analisis seccional de elementos de hormigón armado sometidos a fatiga, incluyendo secciones entre fisuras , 2011 .
[11] M. Werner. SHEAR DESIGN OF PRESTRESSED CONCRETE STEPPED BEAMS , 1973 .
[12] M. Saiidi,et al. Exploratory Study of Seismic Response of Concrete Columns with Shape Memory Alloys Reinforcement , 2006 .
[13] Ferdinando Auricchio,et al. Shape memory alloy superelastic behavior: 3D finite-element simulations , 1996, Other Conferences.
[14] Edward Cohen,et al. Guide for Ultimate Strength Design of Reinforced Concrete , 1956 .
[15] Mehdi Ghassemieh,et al. Multilinear one-dimensional shape memory material model for use in structural engineering applications , 2007 .
[16] Ferdinando Auricchio,et al. A uniaxial model for shape-memory alloys , 1997 .
[17] F. Vecchio,et al. THE MODIFIED COMPRESSION FIELD THEORY FOR REINFORCED CONCRETE ELEMENTS SUBJECTED TO SHEAR , 1986 .
[18] Luisa María Gil-Martín,et al. Optimal domains for strength design of rectangular sections for axial load and moment according to Eurocode 2 , 2007 .
[19] Moncef L. Nehdi,et al. Stress block parameters for concrete flexural members reinforced with superelastic shape memory alloys , 2009 .
[20] M. Saiid Saiidi,et al. Pilot Study of Behavior of Concrete Beams Reinforced with Shape Memory Alloys , 2007 .
[21] Rectangular plates compressed by a series of in-plane loads: stability and stress distribution , 1983, The Aeronautical Journal (1968).
[22] E. Sacco,et al. A Superelastic Shape-Memory-Alloy Beam Model , 1997 .
[23] Hiroyuki Tamai,et al. Pseudoelastic behavior of shape memory alloy wire and its application to seismic resistance member for building , 2002 .
[24] Luisa María Gil-Martín,et al. Dimensionamiento en rotura a flexión de secciones de hormigón armado. Un planteamiento compacto , 2012 .
[25] M. Saiid Saiidi,et al. Cyclic Response of Concrete Bridge Columns Using Superelastic Nitinol and Bendable Concrete , 2009 .