Core-shell structured silicon nanoparticles@TiO2-x/carbon mesoporous microfiber composite as a safe and high-performance lithium-ion battery anode.

A core-shell structured Si nanoparticles@TiO2-x/C mesoporous microfiber composite has been synthesized by an electrospinning method. The core-shell composite exhibits high reversible capacity, excellent rate capability, and improved cycle performance as an anode material for Li-ion batteries. Furthermore, it shows remarkable suppression of exothermic behavior, which can prevent possible thermal runaway and safety problems of the cells. The improved electrochemical and thermal properties are ascribed to the mechanically, electrically, and thermally robust shell structure of the TiO2-x/C nanocomposite encapsulating the Si nanoparticles, which is suggested as a promising material architecture for a safe and reliable Si-based Li-ion battery of high energy density.

[1]  Xiaoming Xie,et al.  H‐Doped Black Titania with Very High Solar Absorption and Excellent Photocatalysis Enhanced by Localized Surface Plasmon Resonance , 2013 .

[2]  Chongyin Yang,et al.  Core-shell nanostructured "black" rutile titania as excellent catalyst for hydrogen production enhanced by sulfur doping. , 2013, Journal of the American Chemical Society.

[3]  Wei Zhang,et al.  A Facile Method to Improve the Photocatalytic and Lithium‐Ion Rechargeable Battery Performance of TiO2 Nanocrystals , 2013 .

[4]  B. Scrosati,et al.  Black anatase titania enabling ultra high cycling rates for rechargeable lithium batteries , 2013 .

[5]  D. Mitlin,et al.  ALD TiO2 coated silicon nanowires for lithium ion battery anodes with enhanced cycling stability and coulombic efficiency. , 2013, Physical chemistry chemical physics : PCCP.

[6]  Lei Jiang,et al.  Electrospinning of multilevel structured functional micro-/nanofibers and their applications , 2013 .

[7]  Yang-Kook Sun,et al.  Titanium‐Based Anode Materials for Safe Lithium‐Ion Batteries , 2013 .

[8]  Hui Wu,et al.  Designing nanostructured Si anodes for high energy lithium ion batteries , 2012 .

[9]  Lin Gu,et al.  Rutile-TiO2 nanocoating for a high-rate Li4Ti5O12 anode of a lithium-ion battery. , 2012, Journal of the American Chemical Society.

[10]  M. Marelli,et al.  Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. , 2012, Journal of the American Chemical Society.

[11]  K. Takeno,et al.  Thermal stability of silicon negative electrode for Li-ion batteries , 2012 .

[12]  Goojin Jeong,et al.  Multifunctional TiO2 coating for a SiO anode in Li-ion batteries , 2012 .

[13]  Yong Min Lee,et al.  Electrospun core-shell fibers for robust silicon nanoparticle-based lithium ion battery anodes. , 2012, Nano letters.

[14]  Václav Štengl,et al.  TiO2–Graphene Nanocomposite as High Performace Photocatalysts , 2011 .

[15]  Soojin Park,et al.  Helical silicon/silicon oxide core-shell anodes grown onto the surface of bulk silicon. , 2011, Nano letters.

[16]  Yuan Hu,et al.  Carbonization of Poly(methyl methacrylate) by Incorporating Hydroxyapatite Nanorods during Thermal Degradation , 2011 .

[17]  M. Wohlfahrt‐Mehrens,et al.  TiO2 rutile—An alternative anode material for safe lithium-ion batteries , 2011 .

[18]  Heechul Jung,et al.  Nanosize Si anode embedded in super-elastic nitinol (Ni–Ti) shape memory alloy matrix for Li rechargeable batteries , 2011 .

[19]  Young‐Jun Kim,et al.  Prospective materials and applications for Li secondary batteries , 2011 .

[20]  Goojin Jeong,et al.  Stabilizing dimensional changes in Si-based composite electrodes by controlling the electrode porosity: An in situ electrochemical dilatometric study , 2011 .

[21]  M. Batzill,et al.  A two-dimensional phase of TiO₂ with a reduced bandgap. , 2011, Nature chemistry.

[22]  Xiaobo Chen,et al.  Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals , 2011, Science.

[23]  Sung-Man Lee,et al.  Thermal Stability of Lithiated Silicon Anodes with Electrolyte , 2011 .

[24]  Chunsheng Wang,et al.  Virus-enabled silicon anode for lithium-ion batteries. , 2010, ACS nano.

[25]  B. Wei,et al.  Tandem structure of porous silicon film on single-walled carbon nanotube macrofilms for lithium-ion battery applications. , 2010, ACS nano.

[26]  Y. Yamauchi,et al.  General synthesis of fibrous mesoporous metal oxides in polycarbonate membrane , 2010 .

[27]  J. Rogers,et al.  Arrays of sealed silicon nanotubes as anodes for lithium ion batteries. , 2010, Nano letters.

[28]  Cheol‐Min Park,et al.  Nanostructured Sn/TiO2/C composite as a high-performance anode for Li-ion batteries , 2009 .

[29]  Y. Yamauchi,et al.  Formation of mesoporous oxide fibers in polycarbonate confined spaces. , 2009, Chemical communications.

[30]  S. Kerisit,et al.  Effect of Chemical Lithium Insertion into Rutile TiO2 Nanorods , 2009 .

[31]  J. Dahn,et al.  Comparison of the Reactions Between Li x Si or Li0.81C6 and Nonaqueous Solvent or Electrolytes at Elevated Temperature , 2006 .

[32]  J. Macák,et al.  Annealing effects on the photoresponse of TiO2 nanotubes , 2006 .

[33]  E. Roth,et al.  DSC investigation of exothermic reactions occurring at elevated temperatures in lithium-ion anodes containing PVDF-based binders , 2004 .

[34]  Mark N. Obrovac,et al.  Structural changes in silicon anodes during lithium insertion/extraction , 2004 .

[35]  Yutaka Murakami,et al.  Defects in Anatase TiO2 Single Crystal Controlled by Heat Treatments , 2004 .

[36]  R. D. Matthews,et al.  Pyrolysis of poly-methyl methacrylate (PMMA) binder in thermoelectric green tapes made by the tape casting method , 2000 .

[37]  Tsutomu Miyasaka,et al.  Tin-Based Amorphous Oxide: A High-Capacity Lithium-Ion-Storage Material , 1997 .

[38]  T. Jacobsen,et al.  Lithium insertion in different TiO2 modifications , 1988 .

[39]  P. Kofstad Note on the defect structure of rutile (TiO2) , 1967 .

[40]  R. Grigorovici,et al.  Optical Properties and Electronic Structure of Amorphous Germanium , 1966, 1966.

[41]  Song Jin,et al.  Nanostructured silicon for high capacity lithium battery anodes , 2011 .

[42]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.