Tracing pathways of transport protein evolution

We have conducted bioinformatic analyses of integral membrane transport proteins belonging to dozens of families. These families rarely include proteins that function in a capacity other than transport. Many transporters have arisen by intragenic duplication, triplication and quadruplication events, in which the numbers of transmembrane α‐helical hydrophobic segments (TMSs) have increased. The elements multiplied may encode two, three, four, five, six, 10 or 12 TMSs and gave rise to proteins with four, six, seven, eight, nine, 10, 12, 20, 24 and 30 TMSs. Gene fusion, splicing, deletion and insertion events have also contributed to protein topological diversity. Amino acid substitutions have allowed membrane‐embedded domains to become hydrophilic domains and vice versa. Some evidence suggests that amino acid substitutions occurring over evolutionary time may in some cases have drastically altered protein topology. The results summarized in this microreview establish the independent origins of many transporter families and allow postulation of the specific pathways taken for their appearance.

[1]  Michael Y. Galperin,et al.  Comparative Genomics and New Evolutionary Biology , 2003 .

[2]  M. Saier,et al.  CHR, a Novel Family of Prokaryotic Proton Motive Force-Driven Transporters Probably Containing Chromate/Sulfate Antiporters , 1998, Journal of bacteriology.

[3]  Feng Yu,et al.  The roles of the polytopic membrane proteins NarK, NarU and NirC in Escherichia coli K‐12: two nitrate and three nitrite transporters , 2002, Molecular microbiology.

[4]  M. Saier,et al.  The ubiquitous ThrE family of putative transmembrane amino acid efflux transporters. , 2002, Research in microbiology.

[5]  B. Persson,et al.  Phosphate permeases of Saccharomyces cerevisiae. , 1998, Biochimica et biophysica acta.

[6]  M H Saier,et al.  The amino acid/polyamine/organocation (APC) superfamily of transporters specific for amino acids, polyamines and organocations. , 2000, Microbiology.

[7]  Milton H. Saier,et al.  Answering Fundamental Questions in Biology with Bioinformatics Although biological advances depend on experiments, emerging theory-based disciplines also expand our understanding of life and its origins , 2003 .

[8]  Rafael Zardoya,et al.  A Phylogenetic Framework for the Aquaporin Family in Eukaryotes , 2001, Journal of Molecular Evolution.

[9]  R. Greenberg,et al.  Phylogeny of ion channels: clues to structure and function. , 2001, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.

[10]  C. Smith,et al.  Facilitative Urea Transporters , 2001, The Journal of Membrane Biology.

[11]  Milton H. Saier,et al.  Vectorial Metabolism and the Evolution of Transport Systems , 2000, Journal of bacteriology.

[12]  M. Saier,et al.  Export of l-Isoleucine from Corynebacterium glutamicum: a Two-Gene-Encoded Member of a New Translocator Family , 2002, Journal of bacteriology.

[13]  M. Maiden,et al.  Homologous sugar transport proteins in Escherichia coli and their relatives in both prokaryotes and eukaryotes. , 1990, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[14]  M. Maguire,et al.  Structure, properties and regulation of magnesium transport proteins , 2002, Biometals.

[15]  P. Setlow,et al.  Localization of a Germinant Receptor Protein (GerBA) to the Inner Membrane of Bacillus subtilisSpores , 2001, Journal of bacteriology.

[16]  Johan Nilsson,et al.  Rapid topology mapping of Escherichia coli inner-membrane proteins by prediction and PhoA/GFP fusion analysis , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[17]  C. Rouanet,et al.  The PecM protein of the phytopathogenic bacterium Erwinia chrysanthemi, membrane topology and possible involvement in the efflux of the blue pigment indigoidine. , 2001, Journal of molecular microbiology and biotechnology.

[18]  M. Saier A Functional-Phylogenetic Classification System for Transmembrane Solute Transporters , 2000, Microbiology and Molecular Biology Reviews.

[19]  M. Saier Genome archeology leading to the characterization and classification of transport proteins. , 1999, Current opinion in microbiology.

[20]  M H Saier,et al.  The drug/metabolite transporter superfamily. , 2001, European journal of biochemistry.

[21]  Milton H Saier,et al.  The multidrug/oligosaccharidyl-lipid/polysaccharide (MOP) exporter superfamily. , 2003, European journal of biochemistry.

[22]  Nelson M. Yang,et al.  Transport capabilities encoded within the Bacillus subtilis genome. , 2002, Journal of molecular microbiology and biotechnology.

[23]  D. Clapham,et al.  A Prokaryotic Voltage-Gated Sodium Channel , 2001, Science.

[24]  Milton H. Saier,et al.  Size Comparisons among Integral Membrane Transport Protein Homologues in Bacteria, Archaea, and Eucarya , 2001, Journal of bacteriology.

[25]  M. Saier,et al.  Modular assembly of voltage-gated channel proteins: a sequence analysis and phylogenetic study. , 1999, Journal of molecular microbiology and biotechnology.

[26]  Sriram Subramaniam,et al.  Three-dimensional structure of a bacterial oxalate transporter , 2002, Nature Structural Biology.

[27]  M. Saier Phylogenetic approaches to the identification and characterization of protein families and superfamilies. , 1996, Microbial & comparative genomics.

[28]  Y. Mukohata,et al.  Evolution of the archaeal rhodopsins: evolution rate changes by gene duplication and functional differentiation. , 1999, Journal of molecular biology.

[29]  M. Saier,et al.  Computer-aided analyses of transport protein sequences: gleaning evidence concerning function, structure, biogenesis, and evolution , 1994, Microbiological reviews.

[30]  M. Saier,et al.  Overexpression of the Escherichia coli sugE Gene Confers Resistance to a Narrow Range of Quaternary Ammonium Compounds , 2002, Journal of bacteriology.

[31]  M. Klingenberg Molecular aspects of the adenine nucleotide carrier from mitochondria. , 1989, Archives of biochemistry and biophysics.

[32]  D G Kehres,et al.  The CorA magnesium transporter gene family. , 1998, Microbial & comparative genomics.

[33]  T. A. Krulwich,et al.  Twelve-Transmembrane-Segment (TMS) Version (ΔTMS VII-VIII) of the 14-TMS Tet(L) Antibiotic Resistance Protein Retains Monovalent Cation Transport Modes but Lacks Tetracycline Efflux Capacity , 2001, Journal of bacteriology.

[34]  M. Lebens,et al.  The nptA Gene of Vibrio cholerae Encodes a Functional Sodium-Dependent Phosphate Cotransporter Homologous to the Type II Cotransporters of Eukaryotes , 2002, Journal of bacteriology.

[35]  P. Setlow,et al.  Isolation and Characterization of Mutations inBacillus subtilis That Allow Spore Germination in the Novel Germinant d-Alanine , 1999, Journal of bacteriology.

[36]  Mark Johnston,et al.  Function and Regulation of Yeast Hexose Transporters , 1999, Microbiology and Molecular Biology Reviews.

[37]  Wolfgang Busch,et al.  Two Families of Mechanosensitive Channel Proteins , 2003, Microbiology and Molecular Biology Reviews.

[38]  M. Saier,et al.  The Transporter Classification (TC) System, 2002 , 2002, Critical reviews in biochemistry and molecular biology.

[39]  J. H. Park,et al.  Phylogenetic Characterization of the MIP Family of Transmembrane Channel Proteins , 1996, The Journal of Membrane Biology.

[40]  M. Johnston,et al.  Feasting, fasting and fermenting. Glucose sensing in yeast and other cells. , 1999, Trends in genetics : TIG.

[41]  I. Paulsen,et al.  Membrane transport proteins: implications of sequence comparisons. , 1992, Current opinion in cell biology.

[42]  J. M. Saier Families of Proteins Forming Transmembrane Channels , 2000, The Journal of membrane biology.

[43]  S. Subramaniam,et al.  Structural Model for 12-Helix Transporters Belonging to the Major Facilitator Superfamily , 2003, Journal of bacteriology.

[44]  Hideyuki Suzuki,et al.  Functional Analysis of the Erwinia herbicola tutB Gene and Its Product , 2002, Journal of bacteriology.

[45]  M. Saier,et al.  SMR-type multidrug resistance pumps. , 2001, Current opinion in drug discovery & development.

[46]  M. Saier,et al.  A novel ubiquitous family of putative efflux transporters. , 2000, Journal of molecular microbiology and biotechnology.

[47]  M H Saier,et al.  The mitochondrial carrier family of transport proteins: structural, functional, and evolutionary relationships. , 1993, Critical reviews in biochemistry and molecular biology.

[48]  E. Wright,et al.  Membrane Topology Motifs in the SGLT Cotransporter Family , 1997, The Journal of Membrane Biology.

[49]  Y Zhai,et al.  Homologues of archaeal rhodopsins in plants, animals and fungi: structural and functional predications for a putative fungal chaperone protein. , 2001, Biochimica et biophysica acta.

[50]  M. Klingenberg A Mitochondrial Carrier Family for Solute Transport , 1990 .

[51]  Boris Martinac,et al.  Open channel structure of MscL and the gating mechanism of mechanosensitive channels , 2002, Nature.

[52]  D. W. Smith,et al.  The amino acid/auxin:proton symport permease family. , 1999, Biochimica et biophysica acta.

[53]  I. Paulsen,et al.  Phylogenetic analyses of the homologous transmembrane channel-forming proteins of the F0F1-ATPases of bacteria, chloroplasts and mitochondria. , 1996, Microbiology.

[54]  H. Winkler,et al.  Properties of the Glucose-6-Phosphate Transporter from Chlamydia pneumoniae (HPTcp) and the Glucose-6-Phosphate Sensor from Escherichia coli (UhpC) , 2002, Journal of bacteriology.

[55]  J. Spudich Variations on a molecular switch: transport and sensory signalling by archaeal rhodopsins , 1998, Molecular microbiology.

[56]  Bert Poolman,et al.  Quaternary structure and function of transport proteins. , 2002, Trends in biochemical sciences.

[57]  I. Paulsen,et al.  Major Facilitator Superfamily , 1998, Microbiology and Molecular Biology Reviews.

[58]  D. Rotem,et al.  In Vitro Monomer Swapping in EmrE, a Multidrug Transporter from Escherichia coli, Reveals That the Oligomer Is the Functional Unit* , 2001, The Journal of Biological Chemistry.

[59]  M. Saier,et al.  Molecular phylogeny as a basis for the classification of transport proteins from bacteria, archaea and eukarya. , 1998, Advances in microbial physiology.

[60]  G. von Heijne,et al.  Topogenic signals in integral membrane proteins. , 1988, European journal of biochemistry.

[61]  G. von Heijne,et al.  The Internal Repeats in the Na+/Ca2+Exchanger-related Escherichia coli Protein YrbG Have Opposite Membrane Topologies* , 2001, The Journal of Biological Chemistry.

[62]  D. Richardson,et al.  Two domains of a dual‐function NarK protein are required for nitrate uptake, the first step of denitrification in Paracoccus pantotrophus , 2002, Molecular microbiology.

[63]  H. Sahm,et al.  l-Threonine Export: Use of Peptides To Identify a New Translocator from Corynebacterium glutamicum , 2001, Journal of bacteriology.

[64]  I. Paulsen,et al.  Proton-dependent multidrug efflux systems , 1996, Microbiological reviews.

[65]  M. Maguire,et al.  The CorA Mg(2+) transport protein of Salmonella typhimurium. Mutagenesis of conserved residues in the second membrane domain. , 1999, The Journal of biological chemistry.

[66]  J. Sarsero,et al.  Membrane topology analysis of Escherichia coli K-12 Mtr permease by alkaline phosphatase and beta-galactosidase fusions , 1995, Journal of bacteriology.

[67]  B. Persson,et al.  Phosphate permeases of Saccharomyces cerevisiae: structure, function and regulation. , 1999, Biochimica et biophysica acta.

[68]  N. Perzov,et al.  Features of V‐ATPases that distinguish them from F‐ATPases , 2001, FEBS letters.

[69]  B. Chait,et al.  The structure of the potassium channel: molecular basis of K+ conduction and selectivity. , 1998, Science.

[70]  M H Saier,et al.  The RND permease superfamily: an ancient, ubiquitous and diverse family that includes human disease and development proteins. , 1999, Journal of molecular microbiology and biotechnology.

[71]  C. Rensing,et al.  Families of Soft-Metal-Ion-Transporting ATPases , 1999, Journal of bacteriology.

[72]  R. S. Kaplan Structure and Function of Mitochondrial Anion Transport Proteins , 2001, The Journal of Membrane Biology.

[73]  M H Saier,et al.  Evolution of transport proteins. , 2001, Genetic engineering.

[74]  J. Sturgis,et al.  The TolQ–TolR proteins energize TolA and share homologies with the flagellar motor proteins 
MotA–MotB , 2001, Molecular microbiology.