Contact Micromanipulation—Survey of Strategies

This paper surveys contact micromanipulation strategies that are developed to tackle the microscale-related phenomena in microassembly. Strategies are divided according to how they take account of adhesion forces. Micromanipulation refers to handling of objects that have dimensions below hundreds of micrometers with handling accuracy down to submicrometers. The line between micro- and nanomanipulation is not definite but typically the object size in nanomanipulation is considered to reach from atomic and molecular scale to hundreds of nanometers. In contact micromanipulation, the tool physically touches the manipulated objects during handling. Scaling-effect-induced adhesion forces severely complicate micromanipulation when compared to conventional macromanipulation. At microscale, the most important adhesive forces are van der Waals force, electrostatic force, and capillary force. Adhesion forces are also the reason behind the fairly low level of automation in microassembly systems. Improved success rate of micromanipulation operations requires that the special features of microscale phenomena be taken into consideration.

[1]  T. KOZUKA NON-CONTACT ACOUSTIC MANIPULATION USING CROSSING ULTRASOUND , 2003 .

[2]  Fumihito Arai,et al.  Prototyping design and automation of micro/nano manipulation system , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[3]  Fumihito Arai,et al.  Micro manipulation based on micro physics-strategy based on attractive force reduction and stress measurement , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[4]  Eniko T. Enikov,et al.  Microassembly experiments with transparent electrostatic gripper under optical and vision-based control , 2005, IEEE Transactions on Industrial Electronics.

[5]  Michaël Gauthier,et al.  Principle of a Submerged Freeze Gripper for Microassembly , 2008, IEEE Transactions on Robotics.

[6]  Fumihito Arai,et al.  3D nanorobotic manipulation of nano-order objects inside SEM , 2000, MHS2000. Proceedings of 2000 International Symposium on Micromechatronics and Human Science (Cat. No.00TH8530).

[7]  Tomomasa Sato,et al.  Micro object handling system with concentrated visual fields and new handling skills , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[8]  Alain Delchambre,et al.  Non-contact handling in microassembly: Acoustical levitation , 2005 .

[9]  A. Delchambre,et al.  Capillary and surface tension forces in the manipulation of small parts , 2003, Proceedings of the IEEE International Symposium onAssembly and Task Planning, 2003..

[10]  Ronald S. Fearing,et al.  Survey of sticking effects for micro parts handling , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[11]  Michaël Gauthier,et al.  Submerged Robotic Micromanipulation and Dielectrophoretic Micro-object Release , 2006, 2006 9th International Conference on Control, Automation, Robotics and Vision.

[12]  Jang Min Park,et al.  A hybrid-type micro-gripper with an integrated force sensor , 2003 .

[13]  Sitti Metin Teleoperated 2-D Micro/Nanomanipulation Using Atomic Force Microscope , 1999 .

[14]  Shuxiang Guo,et al.  A new ice gripper based on thermoelectric effect for manipulating micro objects , 2007, 2007 7th IEEE Conference on Nanotechnology (IEEE NANO).

[15]  D. Barrow,et al.  Microparticle manipulation in millimetre scale ultrasonic standing wave chambers. , 1998, Ultrasonics.

[16]  Jurgen Kosel,et al.  Development of a microgripping system for handling of microcomponents , 2008 .

[17]  Tomomasa Sato,et al.  Kinematics of mechanical and adhesional micromanipulation under a scanning electron microscope , 2002 .

[18]  L. Reimer,et al.  Scanning Electron Microscopy , 1984 .

[19]  Zhongwei Jiang,et al.  Micromanipulation using squeeze effect , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[20]  M. Washizu,et al.  Molecular surgery of DNA based on electrostatic micromanipulation , 1998, Conference Record of 1998 IEEE Industry Applications Conference. Thirty-Third IAS Annual Meeting (Cat. No.98CH36242).

[21]  Shigeki Saito,et al.  A Scheme of Micromanipulation using a Liquid Bridge , 2003 .

[22]  Xiaobo Tan,et al.  A Dynamic JKR Model with Application to Vibrational Release in Micromanipulation , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[23]  Yu Zhou,et al.  The effect of material properties and gripping force on micrograsping , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[24]  J R Tucker,et al.  Atomic-Scale Desorption Through Electronic and Vibrational Excitation Mechanisms , 1995, Science.

[25]  H. von Känel,et al.  AFM-study of sticking effects for microparts handling , 2000 .

[26]  Bradley J. Nelson,et al.  Micro and Nanorobotic Assembly Using Dielectrophoresis , 2005, Robotics: Science and Systems.

[27]  Lynn Fuller Scaling Laws, Actuators, and Power in Miniaturization , 2008 .

[28]  M. Sitti,et al.  Survey of nanomanipulation systems , 2001, Proceedings of the 2001 1st IEEE Conference on Nanotechnology. IEEE-NANO 2001 (Cat. No.01EX516).

[29]  D. Grier A revolution in optical manipulation , 2003, Nature.

[30]  M. Takeuchi Ultrasonic micromanipulator using visual feedback , 1997, 1997 IEEE Ultrasonics Symposium Proceedings. An International Symposium (Cat. No.97CH36118).

[31]  L. Reimer Scanning Electron Microscopy: Physics of Image Formation and Microanalysis , 1984 .

[32]  Gunther Reinhart,et al.  Non-Contact Handling Using High-Intensity Ultrasonics , 2000 .

[33]  D. Eigler,et al.  Positioning single atoms with a scanning tunnelling microscope , 1990, Nature.

[34]  Yu Zhou,et al.  Sensor-based microassembly of hybrid MEMS devices , 1998 .

[35]  W. Brenner,et al.  Gripping tools for handling and assembly of microcomponents , 2002, 2002 23rd International Conference on Microelectronics. Proceedings (Cat. No.02TH8595).

[36]  Heikki N. Koivo,et al.  Microassembly system with controlled environment , 2002 .

[37]  Dominiek Reynaerts,et al.  Assembly of Microsystems , 2000 .

[38]  W. Nogimori,et al.  A laser-powered micro-gripper , 1997, Proceedings IEEE The Tenth Annual International Workshop on Micro Electro Mechanical Systems. An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots.

[39]  P. Xavier,et al.  Micro-assembly planning with van der Waals force , 1999, Proceedings of the 1999 IEEE International Symposium on Assembly and Task Planning (ISATP'99) (Cat. No.99TH8470).

[40]  Manfred Kohl,et al.  SMA microgripper system , 2002 .

[41]  Philippe Lutz,et al.  A Generic Approach for a Micro Parts Feeding System , 2006, IPAS.

[42]  G. Alici,et al.  Performance Quantification of Conducting Polymer Actuators for Real Applications: A Microgripping System , 2007, IEEE/ASME Transactions on Mechatronics.

[43]  Denis Wirtz,et al.  Magnetic tweezers for DNA micromanipulation , 2000 .

[44]  T. Fukuda,et al.  A NEW PICK UP & RELEASE METHOD BY HEATING FOR , 2004 .

[45]  T. Fukuda,et al.  Integrated microendeffector for micromanipulation , 1998 .

[46]  Joe Cecil,et al.  Assembly and manipulation of micro devices-A state of the art survey , 2007 .

[47]  B. Nelson,et al.  Monolithically Fabricated Microgripper With Integrated Force Sensor for Manipulating Microobjects and Biological Cells Aligned in an Ultrasonic Field , 2007, Journal of Microelectromechanical Systems.

[48]  Huang Xinhan,et al.  Research on Vacuum Micro-Gripper of Intelligent Micromanipulation Robots , 2004 .

[49]  Charlie Gosse,et al.  Magnetic tweezers: micromanipulation and force measurement at the molecular level. , 2002, Biophysical journal.

[50]  Quan Zhou,et al.  Virtual environment for operations in the microworld , 2000, SPIE Optics East.

[51]  William S. N. Trimmer,et al.  Scaling of Micromechanical Devices , 2001 .

[52]  B. V. Derjaguin,et al.  Effect of contact deformations on the adhesion of particles , 1975 .

[53]  R. Celotta,et al.  Manipulation of Adsorbed Atoms and Creation of New Structures on Room-Temperature Surfaces with a Scanning Tunneling Microscope , 1991, Science.

[54]  Juergen Hesselbach,et al.  Centering electrostatic microgripper and magazines for microassembly tasks , 2001, Optics East.

[55]  L. Kiesewetter,et al.  Downscaling of grippers for micro assembly , 2002 .

[56]  R. Krupke,et al.  Separation of Metallic from Semiconducting Single-Walled Carbon Nanotubes , 2003, Science.

[57]  Hubert M. Pollock,et al.  Surface forces, deformation and adherence at metal microcontacts , 1984 .

[58]  Lars Egil Helseth,et al.  Microscopic magnetic squeezer , 2004 .

[59]  Bradley J. Nelson,et al.  Modeling microassembly tasks with interactive forces , 2001, Proceedings of the 2001 IEEE International Symposium on Assembly and Task Planning (ISATP2001). Assembly and Disassembly in the Twenty-first Century. (Cat. No.01TH8560).

[60]  I. Fassi,et al.  Development of a gripping system based on capillary force , 2005, (ISATP 2005). The 6th IEEE International Symposium on Assembly and Task Planning: From Nano to Macro Assembly and Manufacturing, 2005..

[61]  YVES ROLLOT,et al.  Dynamical model for the micro-manipulation by adhesion : experimental validations for determined conditions , .

[62]  Bernhard Karpuschewski,et al.  A classification scheme for quantitative analysis of micro‐grip principles , 2004 .

[63]  Ezra Bar-Ziv,et al.  Direct determination of 3D forces applied on a particle suspended in an electrodynamic chamber , 1996 .

[64]  Fumihito Arai,et al.  Assembly of nanodevices with carbon nanotubes through nanorobotic manipulations , 2003, Proc. IEEE.

[65]  Shigeki Saito,et al.  Electrostatic detachment of an adhering particle from a micromanipulated probe , 2003 .

[66]  Ken Goldberg,et al.  MEMS fixtures for handling and assembly of microparts , 1999, Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components.

[67]  Mir Behrad Khamesee,et al.  Real-time control of a magnetic levitation device based on instantaneous modeling of magnetic field , 2008 .

[68]  K. Kendall,et al.  Surface energy and the contact of elastic solids , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[69]  Alain Delchambre,et al.  A study of capillary forces as a gripping principle , 2004 .

[70]  Shigeki Saito,et al.  Adhesion of micrometer-sized polymer particles under a scanning electron microscope , 2000 .

[71]  Anna Kochan European project develops “ice” gripper for micro‐sized components , 1997 .

[72]  Jan Peirs,et al.  Design of micromechatronic systems: scale laws, technologies, and medical applications , 2001 .

[73]  Zhaowei Zhong,et al.  A microgripper using piezoelectric actuation for micro-object manipulation , 2007 .

[74]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[75]  C. Clevy,et al.  Description and performances of a four-degrees-of-freedom piezoelectric gripper , 2003, Proceedings of the IEEE International Symposium onAssembly and Task Planning, 2003..

[76]  U.C. Wejinya,et al.  Development of pneumatic end effector for micro robotic manipulators , 2005, Proceedings, 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics..

[77]  D.S. Haliyo,et al.  Advanced applications using [mu]MAD, the adhesion based dynamic micro-manipulator , 2003, Proceedings 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2003).

[78]  A. Delchambre,et al.  Electrostatic forces and micromanipulator design: on the importance of surface topography parameters , 2007, 2007 IEEE/ASME international conference on advanced intelligent mechatronics.

[79]  Benjamin Shapiro,et al.  Control and System Integration of Micro- and Nano-Scale Systems , 2004 .

[80]  Kunio Takahashi,et al.  Capillary force with a concave probe-tip for micromanipulation , 2005 .

[81]  Kunio Takahashi,et al.  Voltage required to detach an adhered particle by Coulomb interaction for micromanipulation , 2001 .

[82]  Amir Khajepour,et al.  Modeling of two-hot-arm horizontal thermal actuator , 2003 .

[83]  E Gerhard,et al.  Design and fabrication of a current-pulse-excited bistable magnetic microactuator , 1997 .

[84]  Quan Zhou,et al.  Evaluation of adhesion forces between arbitrary objects for micromanipulation , 2006 .

[85]  C. Bark,et al.  Gripping with low viscosity fluids , 1998, Proceedings MEMS 98. IEEE. Eleventh Annual International Workshop on Micro Electro Mechanical Systems. An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems (Cat. No.98CH36176.

[86]  B. Karpuschewski,et al.  First investigations on force mechanisms in liquid solidification micro-gripping , 2005, (ISATP 2005). The 6th IEEE International Symposium on Assembly and Task Planning: From Nano to Macro Assembly and Manufacturing, 2005..

[87]  S. Juodkazis,et al.  Photophysics and photochemistry of a laser manipulated microparticle , 1999 .

[88]  Anand Jagota,et al.  Surface formulation for molecular interactions of macroscopic bodies , 1997 .

[89]  A. Sasso,et al.  Measurements of trapping efficiency and stiffness in optical tweezers , 2002 .

[90]  Quan Zhou,et al.  Capillary Forces Modeling in Micro/Nano Interactions , 2007 .

[91]  William S. N. Trimmer,et al.  Microrobots and micromechanical systems , 1989 .

[92]  Michael J. Donahue,et al.  Manipulation and sorting of magnetic particles by a magnetic force microscope on a microfluidic magnetic trap platform , 2005 .

[93]  Quan Zhou,et al.  Hybrid microhandling: a unified view of robotic handling and self-assembly , 2008 .

[94]  Markus Brunner,et al.  Vacuum tool for handling microobjects with a NanoRobot , 1997, Proceedings of International Conference on Robotics and Automation.

[95]  Ronald S. Fearing,et al.  Automating microassembly with ortho-tweezers and force sensing , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[96]  Jing Liu,et al.  A convective cooling enabled freeze tweezer for manipulating micro-scale objects , 2008 .

[97]  Monika Fleischer,et al.  Real-time gripping detection for a mechanically actuated microgripper , 2008 .

[98]  Metin Sitti,et al.  Manufacturing of two and three-dimensional micro/nanostructures by integrating optical tweezers with chemical assembly , 2005, Robotica.

[99]  S. Saito,et al.  Electrostatic micromanipulation of a conductive/dielectric particle by a single probe , 2007, 2007 7th IEEE Conference on Nanotechnology (IEEE NANO).

[100]  Quan Zhou,et al.  6 DOF dexterous microgripper for inspection of microparts , 2005, Proceedings, 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics..

[101]  Fumihito Arai,et al.  Teleoperated laser manipulator with dielectrophoretic assistance for selective separation of a microbe , 1999, Proceedings 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human and Environment Friendly Robots with High Intelligence and Emotional Quotients (Cat. No.99CH36289).

[102]  Zhaoying Zhou Régnier,et al.  A flexure hinge mechanism meets the demand for XYΘ motion mechanism driven by one piezoelectric element , 2001 .

[103]  Shigeki Saito,et al.  Electrostatic detachment of a micro-object from a probe by applied voltage , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[104]  Kensuke Tsuchiya,et al.  Microassembly and microbonding in Nano Manufacturing World , 1999, Optics East.