Chapter 24 - Information Based Learning

[1]  Xiaohong Jiang,et al.  Generalized Two-Hop Relay for Flexible Delay Control in MANETs , 2012, IEEE/ACM Transactions on Networking.

[2]  Badong Chen,et al.  Survival Information Potential: A New Criterion for Adaptive System Training , 2012, IEEE Transactions on Signal Processing.

[3]  Gavin Brown,et al.  Conditional Likelihood Maximisation: A Unifying Framework for Information Theoretic Feature Selection , 2012, J. Mach. Learn. Res..

[4]  José Carlos Príncipe,et al.  A reproducing kernel Hilbert space formulation of the principle of relevant information , 2011, 2011 IEEE International Workshop on Machine Learning for Signal Processing.

[5]  José Carlos Príncipe,et al.  An efficient rank-deficient computation of the Principle of Relevant Information , 2011, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[6]  Weifeng Liu,et al.  An Information Theoretic Approach of Designing Sparse Kernel Adaptive Filters , 2009, IEEE Transactions on Neural Networks.

[7]  Deniz Erdogmus,et al.  Information Theoretic Learning , 2005, Encyclopedia of Artificial Intelligence.

[8]  José Carlos Príncipe,et al.  A Reproducing Kernel Hilbert Space Framework for Information-Theoretic Learning , 2008, IEEE Transactions on Signal Processing.

[9]  Robert Jenssen,et al.  Information cut for clustering using a gradient descent approach , 2007, Pattern Recognit..

[10]  Robert Jenssen,et al.  Kernel Maximum Entropy Data Transformation and an Enhanced Spectral Clustering Algorithm , 2006, NIPS.

[11]  J.C. Principe,et al.  From linear adaptive filtering to nonlinear information processing - The design and analysis of information processing systems , 2006, IEEE Signal Processing Magazine.

[12]  Robert Jenssen,et al.  Some Equivalences between Kernel Methods and Information Theoretic Methods , 2006, J. VLSI Signal Process..

[13]  Rabab K. Ward,et al.  14 FROM LINEAR ADAPTIVE FILTERING TO NONLINEAR INFORMATION PROCESSING , 2006 .

[14]  Erwin Lutwak,et al.  Crame/spl acute/r-Rao and moment-entropy inequalities for Renyi entropy and generalized Fisher information , 2005, IEEE Transactions on Information Theory.

[15]  Yunmei Chen,et al.  Cumulative residual entropy: a new measure of information , 2004, IEEE Transactions on Information Theory.

[16]  Deniz Erdogmus,et al.  Beyond second-order statistics for learning: A pairwise interaction model for entropy estimation , 2002, Natural Computing.

[17]  Deniz Erdogmus,et al.  Blind source separation using Renyi's -marginal entropies , 2002, Neurocomputing.

[18]  Deniz Erdogmus,et al.  Generalized information potential criterion for adaptive system training , 2002, IEEE Trans. Neural Networks.

[19]  Deniz Erdogmus,et al.  An error-entropy minimization algorithm for supervised training of nonlinear adaptive systems , 2002, IEEE Trans. Signal Process..

[20]  Deniz Erdoğmuş,et al.  Blind source separation using Renyi's mutual information , 2001, IEEE Signal Processing Letters.

[21]  John W. Fisher,et al.  Learning from Examples with Information Theoretic Criteria , 2000, J. VLSI Signal Process..

[22]  Naftali Tishby,et al.  The information bottleneck method , 2000, ArXiv.

[23]  Naftali Tishby,et al.  Data Clustering by Markovian Relaxation and the Information Bottleneck Method , 2000, NIPS.

[24]  B. Scholkopf,et al.  Fisher discriminant analysis with kernels , 1999, Neural Networks for Signal Processing IX: Proceedings of the 1999 IEEE Signal Processing Society Workshop (Cat. No.98TH8468).

[25]  L. Györfi,et al.  Nonparametric entropy estimation. An overview , 1997 .

[26]  Terrence J. Sejnowski,et al.  An Information-Maximization Approach to Blind Separation and Blind Deconvolution , 1995, Neural Computation.

[27]  H. B. Barlow,et al.  Unsupervised Learning , 1989, Neural Computation.

[28]  Ralph Linsker,et al.  Self-organization in a perceptual network , 1988, Computer.

[29]  Paul Kalata,et al.  Linear prediction, filtering, and smoothing: An information-theoretic approach , 1979, Inf. Sci..

[30]  E. Pfaffelhuber Learning and information theory. , 1972, The International journal of neuroscience.

[31]  Edwin B. Stear,et al.  Entropy analysis of estimating systems , 1970, IEEE Trans. Inf. Theory.

[32]  E. Nadaraya On Estimating Regression , 1964 .

[33]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[34]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[35]  Par N. Aronszajn La théorie des noyaux reproduisants et ses applications Première Partie , 1943, Mathematical Proceedings of the Cambridge Philosophical Society.

[36]  J. Mercer Functions of Positive and Negative Type, and their Connection with the Theory of Integral Equations , 1909 .