Determination of lead(II) in aqueous solution using carbon nanotubes paste electrodes modified with Amberlite IR-120

AbstractA new composite electrode is described for anodic stripping voltammetry determination of Pb(II) at trace level in aqueous solution. The electrode is based on the use of multiwalled carbon nanotubes and Amberlite IR-120. The anodic stripping voltammograms depend, to a large extent, on the composition of the modified electrode and the preconcentration conditions. Under optimum conditions, the anodic peak current at around −0.57 V is linearly related to the concentration of Pb(II) in the range from 9.6 × 10−8 to 1.7 × 10−6 mol L−1 (R = 0.998). The detection limit is 2.1 × 10−8 mol L−1, and the relative standard deviation (RSD) at 0.24 × 10−6 mol L−1 is 1.7% (n = 6). The modified electrode was applied to the determination of Pb(II) using the standard addition method; the results showed average relative recoveries of 95% for the samples analysed. FigureA new composite electrode is described for anodic stripping voltammetry determination of Pb(II) at trace level in aqueous solution. The electrode is based on the use of MWCNT and Amberlite IR-120. The method showed a good linearity for 9.6 × 10−8 - 1.7 × 10−6 mol L−1 and detection limit of 2.1 × 10−8 mol L−1.

[1]  N. Rajesh,et al.  Spectrophotometric determination of lead after preconcentration of its diphenylthiocarbazone complex on an Amberlite XAD-1180 column. , 2008, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[2]  Y. Gogotsi,et al.  Monitoring oxidation of multiwalled carbon nanotubes by Raman spectroscopy , 2007 .

[3]  F. Gode,et al.  Adsorption of Cu(II), Zn(II), Ni(II), Pb(II), and Cd(II) from aqueous solution on Amberlite IR-120 synthetic resin. , 2005, Journal of colloid and interface science.

[4]  A. Mohadesi,et al.  Multiwalled carbon nanotube modified with 1-(2-pyridylazo)-2-naphthol for stripping voltammetric determination of Pb(II). , 2010, The Analyst.

[5]  J. Fei,et al.  Voltammetric determination of cadmium (II) based on a composite film of a thiol-functionalized mesoporous molecular sieve and an ionic liquid , 2011 .

[6]  H. Sharghi,et al.  Differential pulse anodic stripping voltammetric determination of lead(II) with a 1,4-bis(prop-2'-enyloxy)-9,10-anthraquinone modified carbon paste electrode. , 2001, Talanta: The International Journal of Pure and Applied Analytical Chemistry.

[7]  Jae-chun Lee,et al.  Adsorption of copper from the sulphate solution of low copper contents using the cationic resin Amberlite IR 120. , 2009, Journal of hazardous materials.

[8]  Karel Vytras,et al.  Anodic stripping voltammetric measurement of trace heavy metals at antimony film carbon paste electrode , 2009 .

[9]  Dong Sun,et al.  Electrochemical determination of Pb2+ using a carbon nanotube/Nafion composite film-modified electrode , 2008 .

[10]  A. Amine,et al.  Stripping voltammetric determination of mercury(II) and lead(II) using screen-printed electrodes modified with gold films, and metal ion preconcentration with thiol-modified magnetic particles , 2010 .

[11]  Shengshui Hu,et al.  Mercury-free simultaneous determination of cadmium and lead at a glassy carbon electrode modified with multi-wall carbon nanotubes , 2003 .

[12]  W. Daud,et al.  Effect of impregnation of activated carbon with chelating polymer on adsorption kinetics of Pb2+. , 2009, Journal of hazardous materials.

[13]  Pulickel M. Ajayan,et al.  Fast Electron Transfer Kinetics on Multiwalled Carbon Nanotube Microbundle Electrodes , 2001 .

[14]  Gil-Ho Hwang,et al.  Determination of trace metals by anodic stripping voltammetry using a bismuth-modified carbon nanotube electrode. , 2008, Talanta.

[15]  Luyan Zhang,et al.  A multi-walled carbon nanotube/poly(urea-formaldehyde) composite prepared by in situ polycondensation for enhanced electrochemical sensing , 2010 .

[16]  Kangbing Wu,et al.  Electrochemical determination of lead(II) using a montmorillonite calcium-modified carbon paste electrode , 2007 .

[17]  Orawon Chailapakul,et al.  Determination of trace heavy metals in herbs by sequential injection analysis-anodic stripping voltammetry using screen-printed carbon nanotubes electrodes. , 2010, Analytica chimica acta.

[18]  I. Karube,et al.  The advantage of using carbon nanotubes compared with edge plane pyrolytic graphite as an electrode material for oxidase-based biosensors. , 2006, The Analyst.

[19]  Xiaoya Hu,et al.  Electrochemical behavior of lead(II) at poly(phenol red) modified glassy carbon electrode, and its trace determination by differential pulse anodic stripping voltammetry , 2008 .

[20]  Giuseppe Palleschi,et al.  Carbon Paste Electrode Bulk-Modified with the Conducting Polymer Poly(1,8-Diaminonaphthalene): Application to Lead Determination , 2003 .

[21]  J. Riu,et al.  Electrochemical sensing based on carbon nanotubes , 2010 .

[22]  F. Marken,et al.  Simple Cast-Deposited Multi-Walled Carbon Nanotube/Nafion™ Thin Film Electrodes for Electrochemical Stripping Analysis , 2005 .

[23]  César Ricardo Teixeira Tarley,et al.  Simultaneous determination of zinc, cadmium and lead in environmental water samples by potentiometric stripping analysis (PSA) using multiwalled carbon nanotube electrode. , 2009, Journal of hazardous materials.